Novel Presentational Approaches for Reporting Network Meta-Analysis

Sze Huey Tan^{1,3} Nicola J Cooper¹, Sylwia Bujkiewicz¹, Nicky J Welton², Alexander J Sutton¹

Cochrane CMIMG Meeting: Statistics Issues in NMA 16 July 2013

- I University of Leicester
- 2 University of Bristol
- 3 PhD Student Funded by Johnson & Johnson (J&J)

Outline

- Review Presentational Approaches used in reporting Mixed Treatment Comparisons (MTC) in Health Technology Assessment (HTA) reports
 - MTC = NMA

Novel Graphical Displays Developed

PRESENTATIONAL
APPROACHES USED
IN REPORTING MTC
IN HTA

Review of presentational approaches

- Objectives:
 - Understand current practice of reporting MTC in HTA reports
 - Assist development of graphical tools
- Data sources:
 - UK National Institute for Health Research HTA reports from 1997 to 2011 that used indirect or mixed treatment comparisons (IC/MTC)
- Results:
 - Out of 205 reports, 19 reports were identified and reviewed

Results

- In terms of the presentation of IC/MTC results
 - Different tables were used, namely:
 - Matrix Table (MT)
 - Relative Effects Table
 - Absolute Effects Table
 - Graphics:
 - Summary Forest Plot (SFP) An adaption of forest plot that contain only the summary estimates of meta-analysis. [Anzures-Cabrera J, Higgins JPT. Research Synthesis Methods. 2010]

Tables

Matrix Table (MT)

		Mix	ed Treatment Compari	son
	Intervention A	OR _{A-B_MTC} (95% CrI)	OR _{A-C_MTC} (95% CrI)	OR _{A-D_MTC} (95% CrI)
ysis	OR _{A-B_MA} (95% CrI)	Intervention B	OR _{B-C_MTC} (95% CrI)	OR _{B-D_MTC} (95% CrI)
Standard Meta-Analysis	OR _{A-C_MA} (95% CrI)	OR _{B-C_MA} (95% CrI)	Intervention C	OR _{C-D_MTC} (95% CrI)
Sta	Not calculable	OR _{B-D_MA} (95% CrI)	OR _{C-D_MA} (95% CrI)	Intervention D

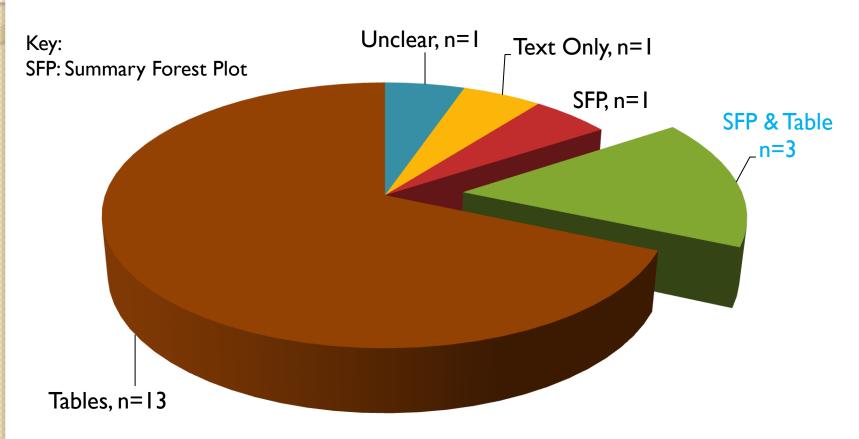
Pairwise Meta-analysis Results (From Head-to-Head Trials)

Mixed Treatment Comparison Results

Relative Effects Table

Treatment Comparators		Mixed Treatment Comparison		Standard Meta-Analysis	
Treatment	Treatment Comparators		95% CrI	Mean	95% CrI
Intervention A	Intervention B	OR _{A-B_MTC}	(95% CrI)	OR _{A-B_MA}	(95% CrI)
Intervention A	Intervention C	OR _{A-C_MTC}	(95% CrI)	OR _{A-C_MA}	(95% CrI)
Intervention A	Intervention D	OR _{A-D_MTC}	(95% CrI)	Not calculable	Not calculable
Intervention B	Intervention C	OR _{B-C_MTC}	(95% CrI)	OR _{B-C_MA}	(95% CrI)
Intervention B	Intervention D	OR _{B-D_MTC}	(95% CrI)	OR _{B-D_MA}	(95% CrI)
Intervention C	Intervention D	OR _{C-D MTC}	(95% CrI)	OR _{C-D MA}	(95% CrI)

Absolute Effects Table


Treatments	Mixed Treatme	nt Comparison	Standard Meta-Analysis	
Treatments	Mean	Mean 95% CrI		95% CrI
Intervention A	Eff _{A_MTC}	(95% CrI)	$\mathrm{Eff}_{\mathrm{A_MA}}$	(95% CrI)
Intervention B	$\mathrm{Eff}_{\mathrm{B_MTC}}$	(95% CrI)	$\mathrm{Eff}_{\mathrm{B_MA}}$	(95% CrI)
Intervention C	Eff _{C_MTC}	(95% CrI)	$\mathrm{Eff}_{\mathrm{C_MA}}$	(95% CrI)
Intervention D	Eff _{D_MTC}	(95% CrI)	$\mathrm{Eff}_{\mathrm{D_MA}}$	(95% CrI)

Summary Forest Plot (SFP)

Comparators **Summary Forest Plot** A vs B Summary estimates for Comparative A vs C Pair of Treatments A vs D instead of B vs C Individual RCT B vs D estimates C vs D <- Favour Treatment on Left Favour Treatment on Right -->

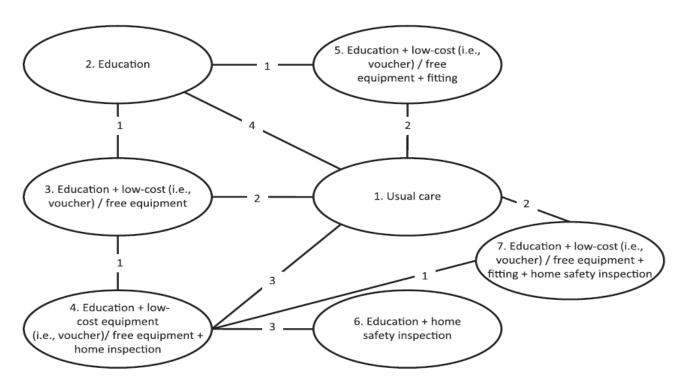
Presentation of MTC Results

HTA review Results

[#] Reports with tables and/or SFP also presented results as text in main report

Conclusions of Review

- MTC is increasing being used
 - Great variation in the tables and graphs formats used
 - Appears to have no standard use of graph
- Network can be very large
 - Large number of potential results presented in large tables and graphs
- Limitation in number of tables and figures in most Journals
 - Reporting of other endpoints, e.g. Adverse events (AEs), Quality of Life
 - 6 of the reports reviewed also used IC/MTC for the analysis of AEs.

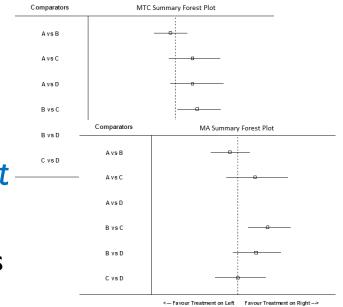

DEVELOPMENT OF GRAPHICAL TOOLS

Graphical tools – Motivations

- Develop new reporting tools for MTC
 - that combines the strength of each individual presentational tools
 - Retaining transparency
 - Maximising interpretation
- Cater for different audiences
 - (eg. Statisticians, Analyst, academics, decision makers, etc.)
 - Different needs and focus
- Develop user-friendly software

Data used in Graph development

• Effectiveness data of 7 interventions aimed to increase the uptake of smoke alarms use in household with children



Cooper NJ, et al. Epidemiologic reviews. 2012;34(1):32-45

Graphical tools development –

Process

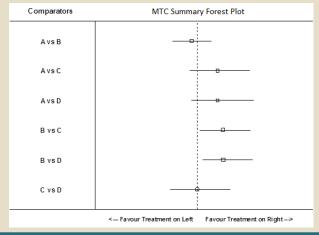
- Plot that contains
 - MTC + Pairwise Meta Analysis Summary Forest Plot
 - Graphical visualisation of comparative treatment effects
 - MTC + Pairwise Meta-Analysis estimates
 - Matrix Table
 - MTC + Pairwise Meta-Analysis side-by-side
 - Assess consistency of the results easily

		Mixed Treatment Comparison		
	Intervention A	OR _{A-B_MTC} (95% Crl)	OR _{A-C_MTC} (95% Crl)	OR _{A-D_MTC} (95% CrI)
Standard Meta-Analysis	OR _{A-B_MA} (95% CrI)	Intervention B	OR _{B-C_MTC} (95% Crl)	OR _{B-D_MTC} (95% CrI)
	OR _{A-C_MA} (95% CrI)	OR _{B-C_MA} (95% CrI)	Intervention C	OR _{C-D_MTC} (95% CrI)
	Not calculable	OR _{B-D_MA} (95% Crl)	OR _{C-D_MA} (95% CrI)	Intervention D

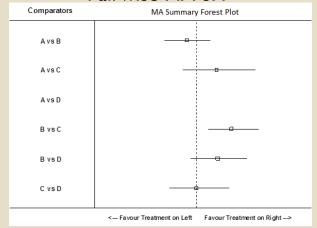
Graphical tools development – Desirable Components

MTC estimates

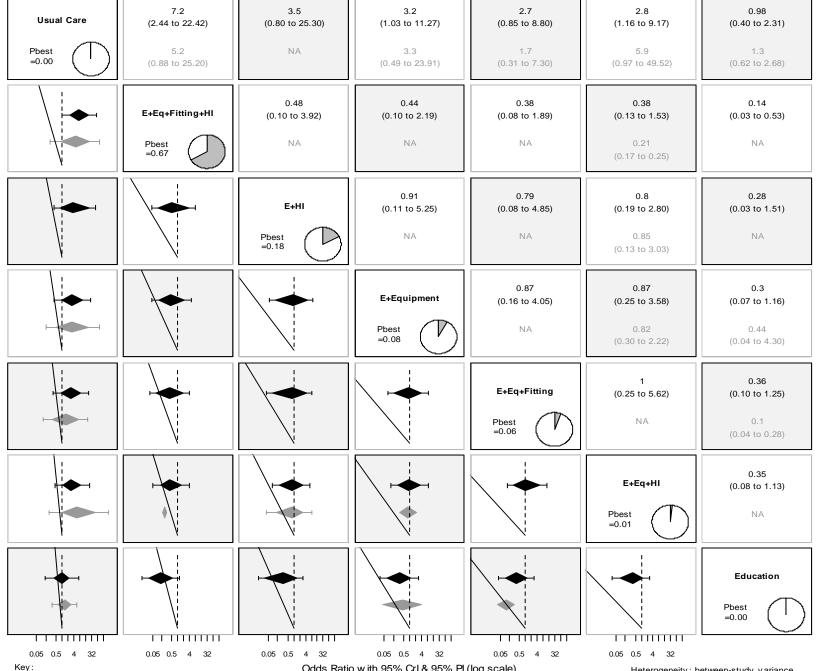
Trantment (Samuaratara	Mixed Treatment Comparison		
Treatment Comparators		Mean	95% CrI	
Intervention A	Intervention B	OR _{A-B_MTC}	(95% CrI)	
Intervention A	Intervention C	OR _{A-C_MTC}	(95% CrI)	
Intervention A	Intervention D	OR _{A-D_MTC}	(95% CrI)	
Intervention B	Intervention C	OR _{B-C_MTC}	(95% CrI)	
Intervention B	Intervention D	OR _{B-D_MTC}	(95% CrI)	
Intervention C Intervention D		OR _{C-D_MTC}	(95% CrI)	


Probability Best

Treatment	Probability Best
Intervention A	Pbest _{A_MTC}
Intervention B	Pbest _{B_MTC}
Intervention C	Pbest _{C_MTC}
Intervention D	Pbest _{D_MTC}


Pairwise MA estimates

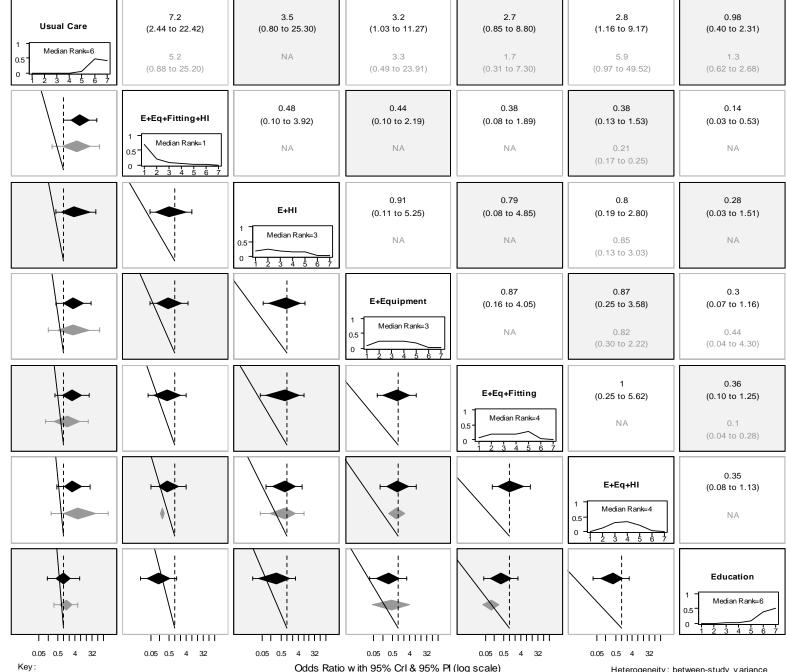
Trantment (Comparators	Standard Meta-Analysis		
Treatment (comparators	Mean	95% CrI	
Intervention A Intervention B		OR _{A-B_MA}	(95% CrI)	
Intervention A Intervention C		OR _{A-C_MA}	(95% CrI)	
Intervention A Intervention D		Not calculable	Not calculable	
Intervention B	Intervention C	OR _{B-C_MA}	(95% CrI)	
Intervention B	Intervention D	OR _{B-D_MA}	(95% CrI)	
Intervention C	Intervention D	OR _{C-D_MA}	(95% CrI)	


MTC SFP

Pairwise MA SFP

Summary Forest Plot Matrix

Odds Ratio with 95% Crl & 95% Pl (log scale)


NMA results in black; Pairwise MA results in grey. 95% Crl and Pl presented as diamond and error bars respectively.

A total of 7 interventions were compared in this NMA.

Interventions are displayed sorted by median rank.

Heterogeneity: between-study variance = 0.59; 95% CrI (0.123 to 2.201)

grams SFP Matrix: Rank-

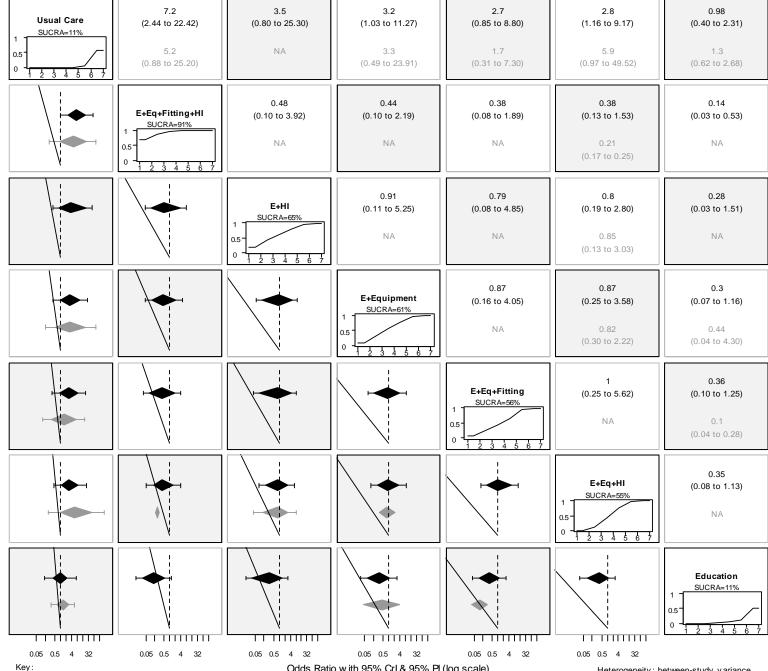
Cdds Ratio with 95% Crl & 95% PI (log scale)

NMA results in black; Pairwise MA results in grey. 95% Crl and PI presented as diamond and error bars respectively.

A total of 7 interventions were compared in this NMA.

Interventions are displayed sorted by median rank.

Heterogeneity: between-study variance = 0.59; 95% Crl (0.123 to 2.201)


SFP Matrix: Mean Rank

Odds Ratio with 95% Crl & 95% Pl (log scale) NMA results in black; Pairwise MA results in grey. 95% Crl and Pl presented as diamond and error bars respectively. A total of 7 interventions were compared in this NMA. Interventions are displayed sorted by median rank.

Heterogeneity: between-study variance = 0.59; 95% CrI (0.123 to 2.201)

SFP Matrix: SUCR

Odds Ratio with 95% Crl & 95% Pl (log scale)

NMA results in black; Pairwise MA results in grey. 95% Crl and Pl presented as diamond and error bars respectively.

A total of 7 interventions were compared in this NMA.

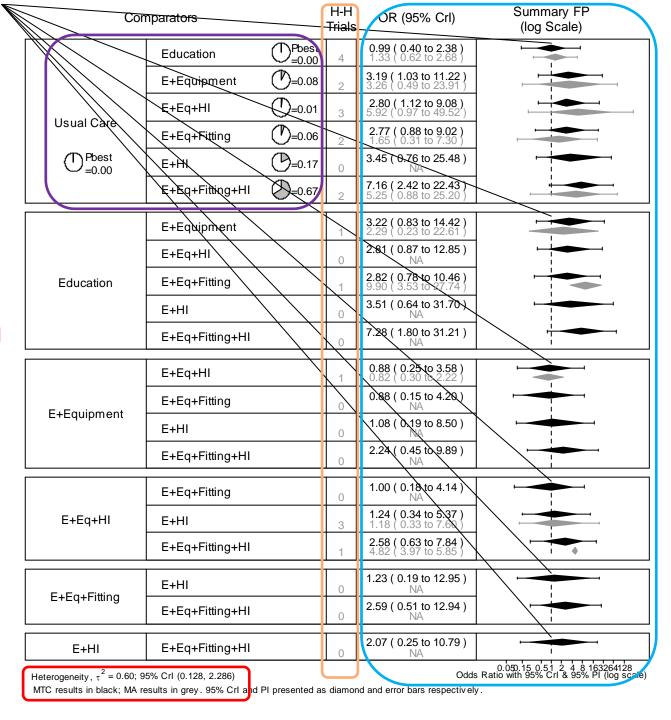
Interventions are displayed sorted by median rank.

Heterogeneity: between-study variance = 0.59; 95% CrI (0.123 to 2.201)

Summary Forest Plot Matrix

SPF Matrix for Smoke Alarm Uptake 7.2 3.5 3.2 2.7 2.8 0.98 **Usual Care** (2.44 to 22.42) (0.80 to 25.30) (1.03 to 11.27) (0.85 to 8.80) (1.16 to 9.17) (0.40 to 2.31) 5.2 NA 5.9 Pbest 3.3 1.3 =0.00 (0.88 to 25.20) (0.49 to 23.91) (0.31 to 7.30) (0.97 to 49.52) (0.62 to 2.68) 0.48 0.44 0.38 0.38 0.14 E+Eq+Fitting+HI (0.10 to 3.92) (0.10 to 2.19) (0.08 to 1.89) (0.13 to 1.53) (0.03 to 0.53) NA NA NA NA Pbest =0.67 (0.17 to 0.25) 0.91 0.79 0.8 0.28 E+HI (0.03 to 1.51) (0.11 to 5.25) (0.08 to 4.85) (0.19 to 2.80) NA NA 0.85 NA Pbest =0.18 (0.13 to 3.03) 0.87 0.87 0.3 E+Equipment (0.07 to 1.16) (0.16 to 4.05) (0.25 to 3.58) Pbest NA 0.82 0.44 =0.08 (0.30 to 2.22) (0.04 to 4.30) 0.36 E+Eq+Fitting (0.25 to 5.62) (0.10 to 1.25) NA Pbest 0.1 =0.06 (0.04 to 0.28) 0.35 E+Eq+HI (0.08 to 1.13) Pbest NA =0.01 Education Pbest =0.001 1 1111111 0.5 2 8 32 0.05 0.5 2 8 32 0.05 0.5 2 8 32 0.05 0.5 2 8 32 0.05 0.5 2 8 32 0.05 0.5 2 8 32 Odds Ratio with 95% CrI (log scale) Key: Heterogeneity: between-study variance NMA results in black; Pairwise MA results in grey. = 0.59; 95% Crl (0.123 to 2.201)

A total of 7 interventions were compared in this NMA. Interventions are displayed sorted by median rank.

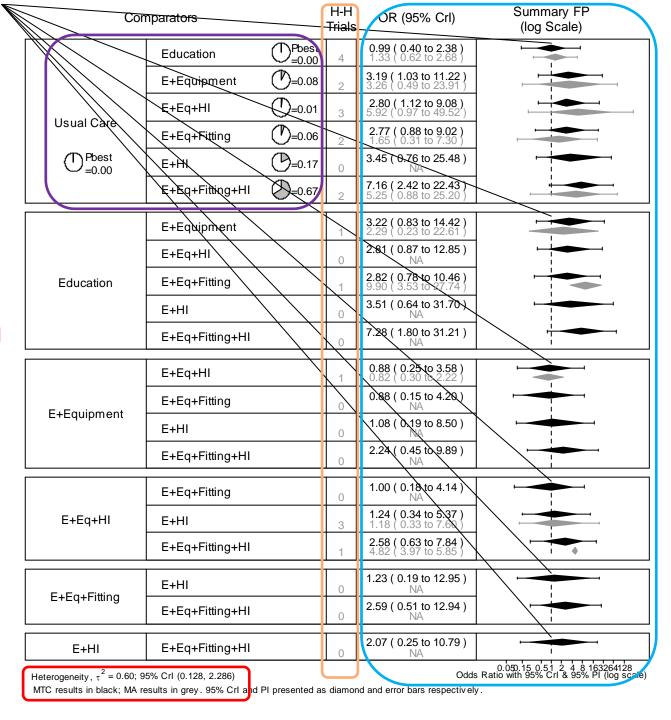

MTC & pairwise MA estimates and plots on the same graph

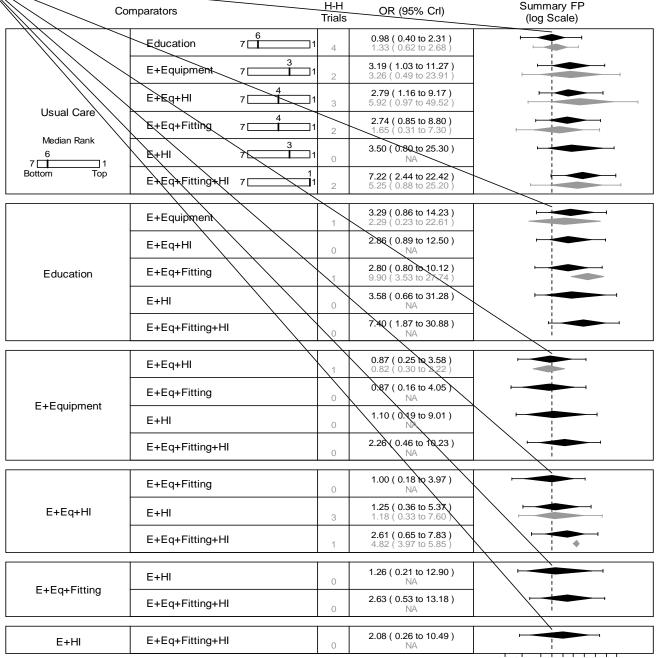
Probability best

Heterogeneity estimate presented

Column showing Head-to-Head Trial counts

Graph can extend easily to another page

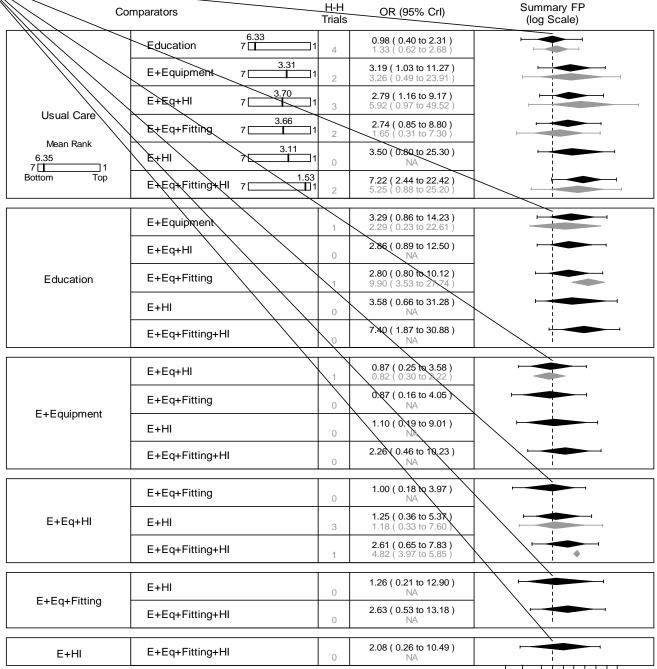

MTC & pairwise MA estimates and plots on the same graph


Probability best

Heterogeneity estimate presented

Column showing Head-to-Head Trial counts

Graph can extend easily to another page



Heterogeneity: between-study variance = 0.59; 95% CrI (0.123 to 2.201)

Key: NMA results in black; Pairwise MA results in grey. 95% CrI and PI presented as diamond and error bars respectively. A total of 7 interventions were compared in this NMA..

Interventions are displayed in the order that they were entered in the analysis.

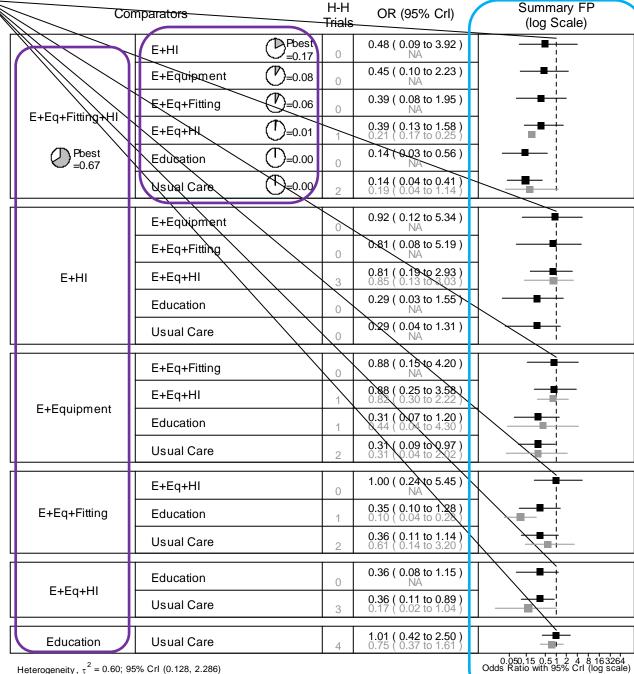
Heterogeneity: between-study variance = 0.59; 95% Crl (0.123 to 2.201)

0.05 0.15 0.5 1 2 4 8 16 32 64 Odds Ratio with 95% Crl & 95% PI (log scale)

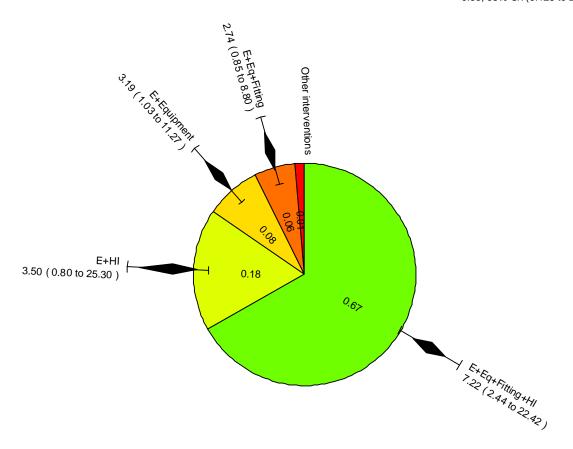
Key: NMA results in black; Pairwise MA results in grey. 95% Crl and PI presented as diamond and error bars respectively. A total of 7 interventions were compared in this NMA..

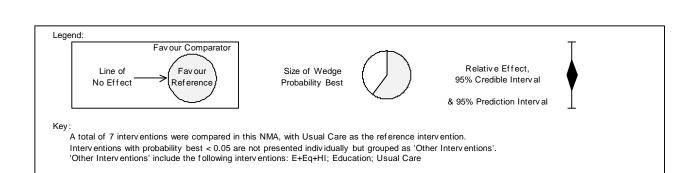
Interventions are displayed in the order that they were entered in the analysis.

Comparators		H-H Trials	OR (95% Crl)	Summary FP (log Scale)	
	Education	SUCRA = 11%	4	0.98 (0.40 to 2.31) 1.33 (0.62 to 2.68)	
	E+Equipment	= 61%	2	3.19 (1.03 to 11.27) 3.26 (0.49 to 23.91)	
Havel Cara	E+Eq+HI	55%	3	2.79 (1.16 to 9.17) 5.92 (0.97 to 49.52)	
Usual Care	E+Eq+Fitting	= 56%	/2	2.74 (0.85 to 8.80) 1.65 (0.31 to 7.30)	
SUCRA =11%	E+HI	= 65%	0	3.50 (0:80 to 25.30) NA	
	E+Eq+Fitting+HI	= 91%	2	7.22 (2.44 to 22.42) 5.25 (0.88 to 25.20)	
	E+Equipment		1	3.29 (0.86 to 14.23) 2.29 (0.23 to 22.61)	
	E+Eq+HI		0	2.86 (0.89 to 12.50)	
Education	E+Eq+Fitting		1	2.80 (0.80 to 10.12) 9.90 (3.53 to 27.74)	
	E+HI		0	3.58 (0.66 to 31.28) NA	
	E+Eq+Fitting+HI		0	7.40 (1.87 to 30.88) NA	
				0.87 (0.25 to 3.58)	
	E+Eq+HI		1	0.82 (0.30 to 2.22)	
E+Equipment -	E+Eq+Fitting		0	0.87 (0.16 to 4.05) NA	
<u> г</u>	E+HI		0	1.10 (0.19 to 9.01)	
	E+Eq+Fitting+HI		0	2.26 (0.46 to 10.23) NA	
	E+Eq+Fitting		0	1.00 (0.18 to 3.97)	
E+Eq+HI	E+HI		3	1.25 (0.36 to 5.3X) 1.18 (0.33 to 7.60)	
	E+Eq+Fitting+HI		1	2.61 (0.65 to 7.83) 4.82 (3.97 to 5.85)	
	E+HI			1.26 (0.21 to 12.90)	
E+Eq+Fitting	E+Eq+Fitting+HI		0	2.63 (0.53 to 13.18) NA	
	· · ·		U	IVA	'
E+HI	E+Eq+Fitting+HI		0	2.08 (0.26 to 10.49) NA	0.05 0.15 0.5 1 2 4 8 16 32 64

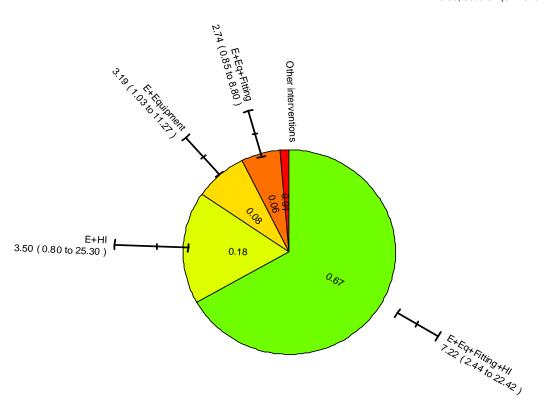

Heterogeneity: between-study variance = 0.59; 95% Crl (0.123 to 2.201)

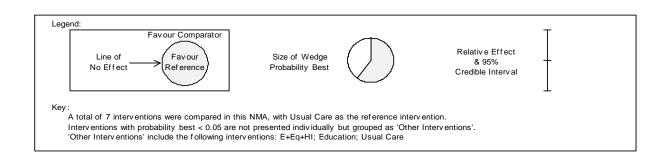
Key: NMA results in black; Pairwise MA results in grey. 95% Crl and PI presented as diamond and error bars respectively. A total of 7 interventions were compared in this NMA..


Interventions are displayed in the order that they were entered in the analysis.


Without 95% prediction Interval

Sorted by **Probability** Best **Statistics**


Heterogeneity, $\tau^2 = 0.60$; 95% CrI (0.128, 2.286) MTC results in black; MA results in grey.



SPF Pie for Smoke Alarm Uptake

Heterogeneity: betw een-study variance = 0.59; 95% CrI (0.123 to 2.201)

Median Rank Chart for Smoke Alarm Uptake

1	E+Eq+Fitting+HI
2	
3	E+Equipment E+HI
4	E+Eq+HI E+Eq+Fitting
5	
6	Usual Care Education
7	

Median Rank Chart for Smoke Alarm Uptake

1	E+Eq+Fitting+HI
2	
3	E+Equipment E+HI
4	E+Eq+HI E+Eq+Fitting
5	
6	Usual Care Education
7	

Characteristics/Objectives

- Summary Forest Plot Matrix (SFP Matrix)
 - achieve comprehensive coverage of MTC results
- Summary Forest Plot Table (SFP Table)
 - reporting style that is good for very large network
- Summary Forest Plot Pie (SFP Pie) and Median Rank Chart
 - highlight comparisons of worthwhile or highranking interventions to a reference intervention

References

Cooper NJ, Kendrick D, Achana F, et al. Network meta-analysis to evaluate the effectiveness of interventions to increase the uptake of smoke alarms. Epidemiologic reviews. 2012;34(1):32-45.

Anzures-Cabrera J, Higgins JPT. Graphical displays for meta-analysis: An overview with suggestions for practice Research Synthesis Methods. 2010;1(1):66-80.

Altman DG, Bland JM. Presentation of numerical data. Bmj. 1996;312(7030):572. Epub 1996/03/02.

Salanti G, Ades AE, Ioannidis JP. Graphical methods and summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J. Clin. Epidem. 2011 64:163-171.

Tan SH, Bujkiewicz S, Sutton AJ et al. Presentational approaches used in the UK for reporting evidence synthesis using indirect and mixed treatment comparisons. J Health Serv Res Policy (in press)