Presenting data & results

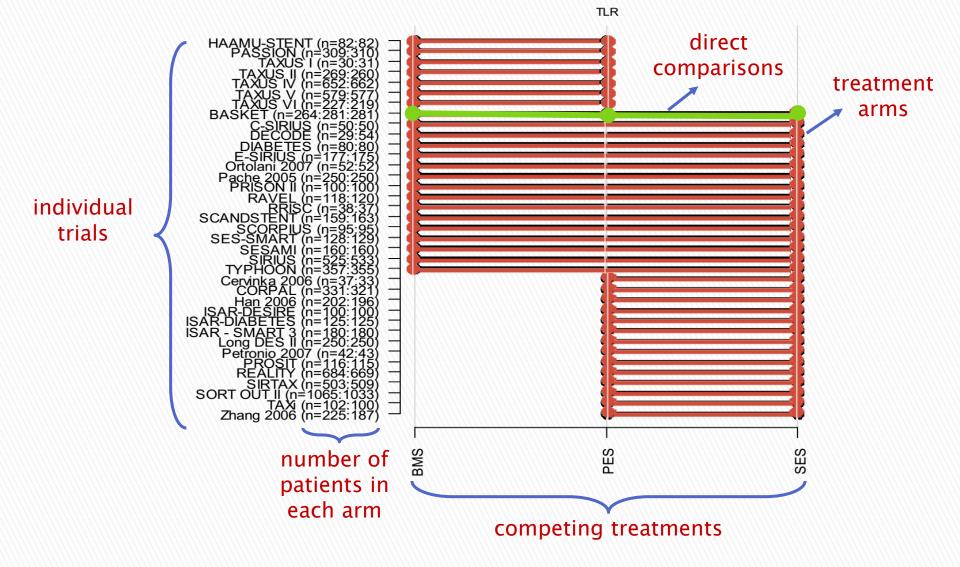
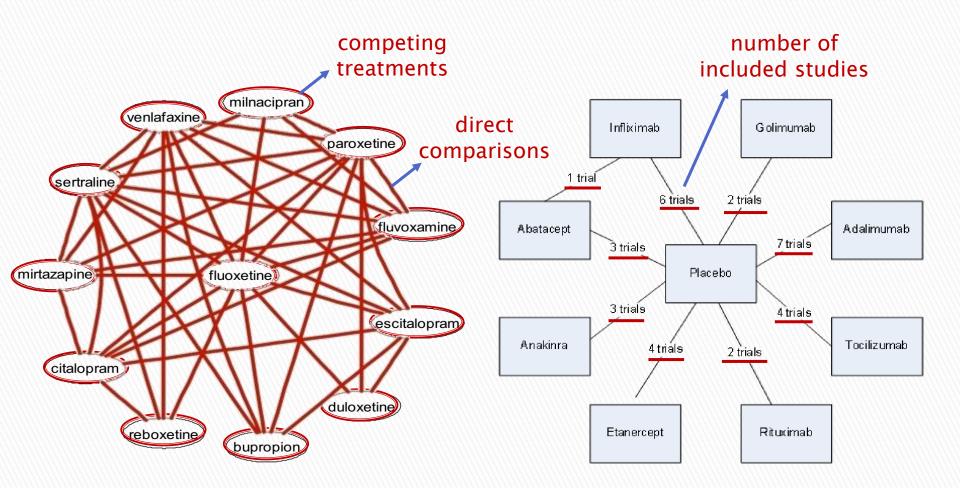
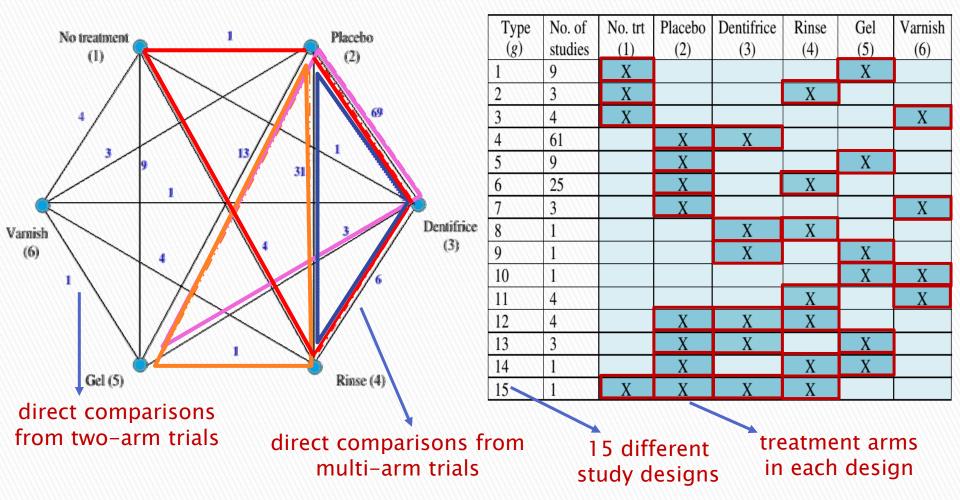
in Network Meta-Analysis

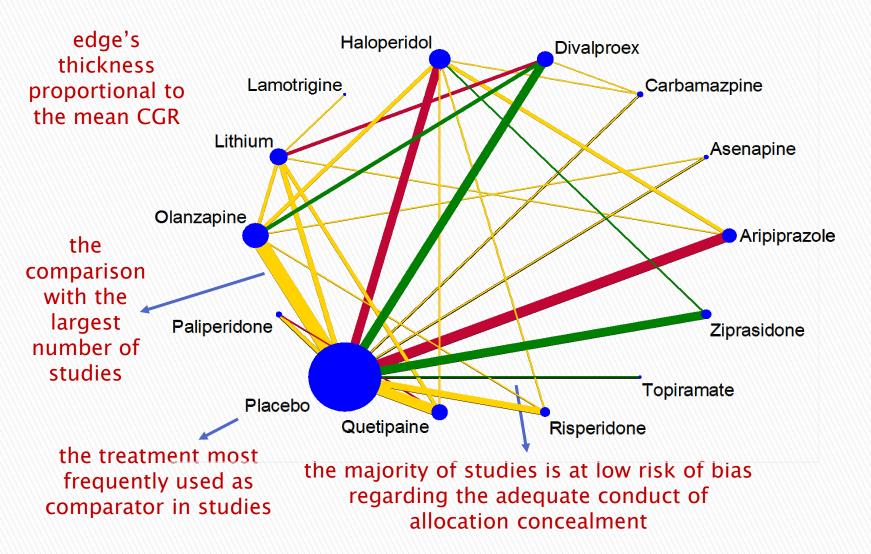
Outline

Graphs presenting the data

- Graphs presenting the results
 - Relative treatment effects
 - Treatment ranking

Presenting the data

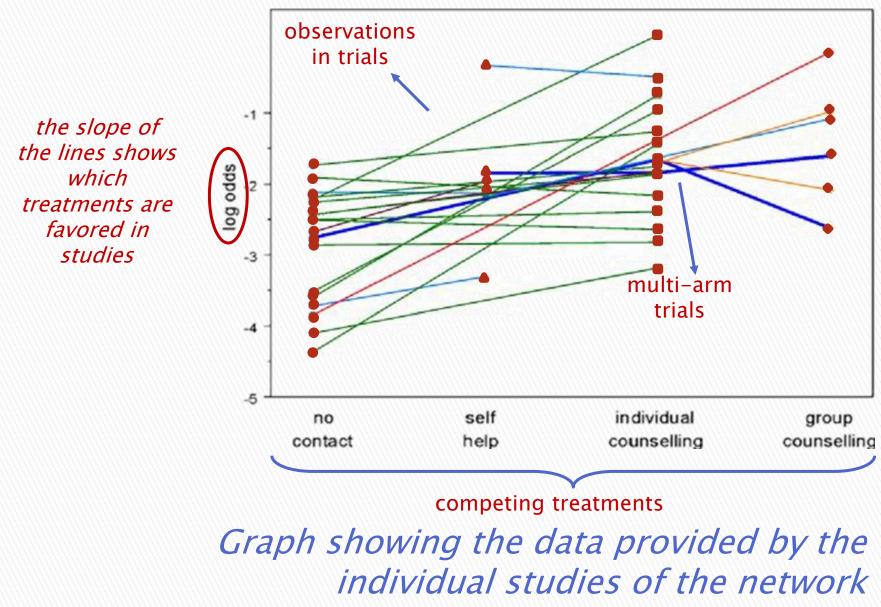

Diagram showing the comparisons involved in the individual studies of the network [Example in Hoaglin et al. 2011]

Network graph showing the available direct comparisons in the network [Examples in Hoaglin et al. 2011 & Jonas et al. 2013]

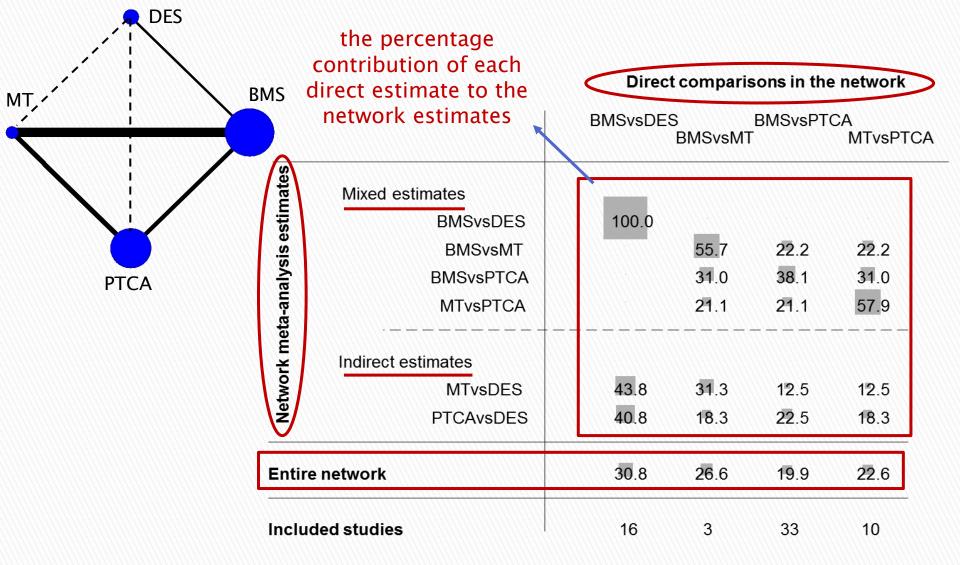
Network graph showing the presence of multi-arm trials & table showing the network structure; the available study designs in the network [Examples in Lu et al. 2011]

Network graph with weighted and/or colored nodes and edges [Examples in Chaimani et al. 2013]

number of trials comparing the treatments in the respective row and column



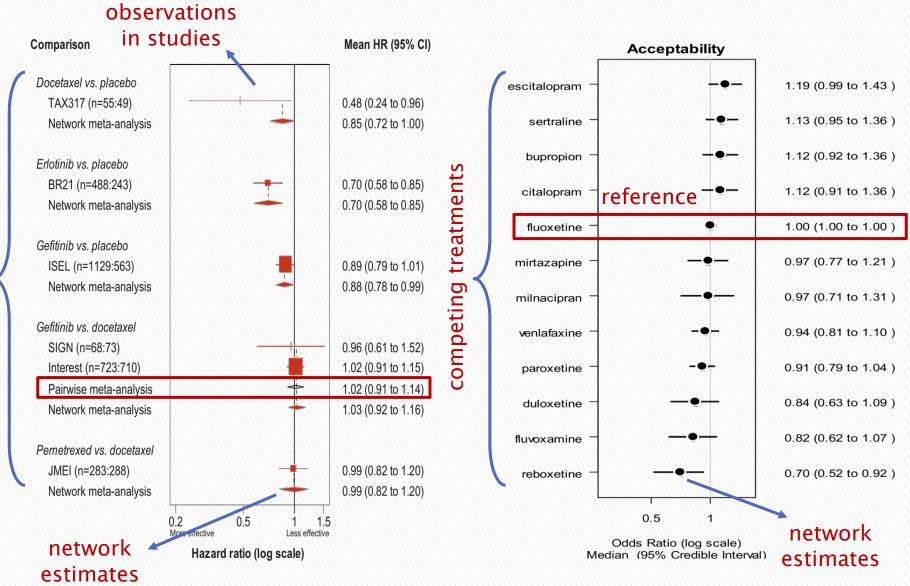
competing


treatments

Matrix showing the available direct comparisons in the network

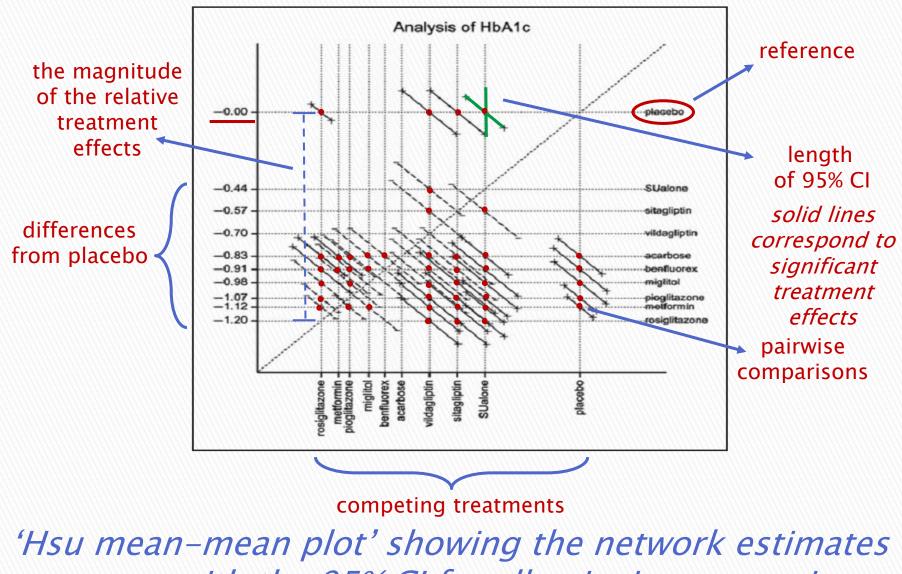
[Example in Ioannidis 2006]

[Example in Lu & Ades 2006]

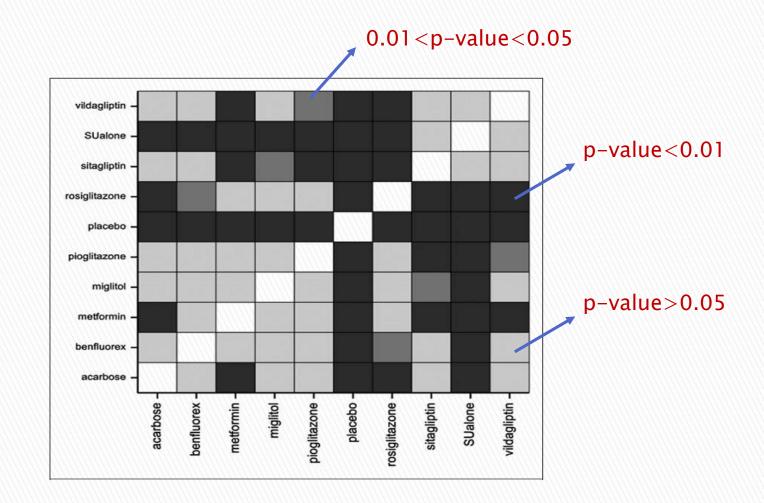

Graph showing the contribution of each direct comparison in the network estimates [Example in Chaimani et al. 2013]

Presenting the results relative treatment effects

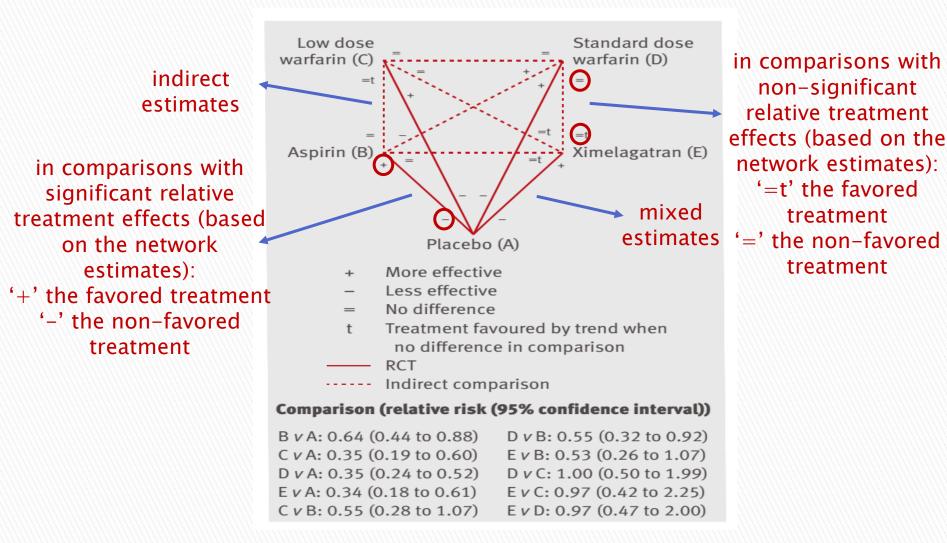
111111	11111111	1111111	77777777					11111111					
HAL	1·40	<u>1-49</u>	0-81	1-32	1·11	1-16	0-86	1·16	0-93	0-69	0-85	<u>0-56</u>	0-48
	(0·93 to 2·11)	(1-03 to 2-15)	(0-53 to 1-22)	(0-85 to 2-06)	(0·75 to 1·66)	(0-63 to 2-14)	(0-46 to 1-60)	(0·73 to 1·86)	(0-59 to 1-49)	(0-36 to 1-36)	(0-62 to 1-15)	(0-34 to 0-93)	(0-16 to 1-44)
-0-06	RIS	1·06	<u>0-58</u>	0-94	0-80	0-83	0-62	0-83	0-67	<u>0.50</u>	<u>0-61</u>	<u>0-40</u>	0-34
(-0-22 to 0-11)		(0·72 to 1·56)	(0-37 to 0-88)	(0-60 to 1-47)	(0-51 to 1-25)	(0-44 to 1-57)	(0-33 to 1-16)	(0-51 to 1-34)	(0-41 to 1-10)	(0.25 to 0.98)	(0-44 to 0-83)	(0-24 to 0-68)	(0-11 to 1-03)
-0·12	-0-07	OLZ	<u>0-54</u>	0.88	0-75	0-78	0-58	0-78	0-63	<u>0-47</u>	<u>0-57</u>	<u>0-38</u>	<u>0-32</u>
(-0·28 to 0·02)	(-0-22 to 0-08)		(0-37 to 0-79)	(0.58 to 1.36)	(0-49 to 1-13)	(0-43 to 1-44)	(0-33 to 1-00)	(0-52 to 1-17)	(0-40 to 1-00)	(0-24 to 0-89)	(<u>0-44 to 0-74</u>)	(0-23 to 0-61)	(0-11 to 0-95
<u>-0·19</u>	-0.13	-0·06	LIT	<u>1.63</u>	1-38	1-44	1-07	1-44	1·15	0-86	1-05	0·70	0-60
(-0· <u>36 to -0·01)</u>	(-0.30 to 0.04)	(-0·22 to 0·10)		(1.06 to 2.54)	(0-91 to 2-12)	(0-81 to 2-60)	(0-57 to 2-00)	(0-92 to 2-28)	(0·71 to 1·91)	(0-47 to 1-59)	(0-78 to 1-43)	(0·44 to 1·11)	(0-20 to 1-77)
<u>-0·19</u>	-0.13	-0-07	-0-01	QTP	0-85	0-88	0-66	0.88	0-71	0-53	<u>0-64</u>	<u>0-43</u>	0-36
(-0· <u>37 to -0·01)</u>	(-0.31 to 0.04)	(-0-24 to 0-11)	(-0-18 to 0-17)		(0-52 to 1-35)	(0-46 to 1-70)	(0-34 to 1-25)	(0.53 to 1.46)	(0-42 to 1-20)	(0-27 to 1-05)	(0-45 to 0-91)	(0-25 to 0-73)	(0-12 to 1-10)
<u>-0·19</u>	-0.13	-0·06	-0-01	0-00	ARI	1·04	0-77	1·05	0·84	0.62	0-76	<u>0.50</u>	0-43
(-0· <u>36 to -0·02)</u>	(-0.31 to 0.05)	(-0·23 to 0·11)	(-0-18 to 0-17)	(-0-19 to 0-20)		(0·55 to 1·98)	(0-41 to 1-47)	(0·64 to 1·70)	(0·51 to 1·39	(0.32 to 1.24)	(0-55 to 1-06)	(0.30 to 0.85)	(0-14 to 1-29)
<u>-0·20</u>	-0-14	-0·08	-0-02	-0-01	-0·01	CBZ	0·74	1·00	0-80	0.60	0-73	<u>0-48</u>	0-41
(-0· <u>36 to -0·01)</u>	(-0-42 to 0-12)	(-0·34 to 0·18)	(-0-28 to 0-24)	(-0-30 to 0-26)	(-0·29 to 0·26)		(0·34 to 1·62)	(0·52 to 1·91)	(0-41 to 1-59)	(0.27 to 1.33)	(0-42 to 1-28)	(0-25 to 0-96)	(0-13 to 1-37)
<u>-0-26</u>	-0-20	-0-14	-0-08	-0-07	-0·07	-0-06	ASE	1·35	1-08	0-81	0-98	0-65	0-56
(-0-52 to -0-01)	(-0-46 to 0-05)	(-0-36 to 0-10)	(-0-41 to 0-27)	(-0-34 to 0-20)	(-0·34 to 0·20)	(-0-39 to 0-28)		(0·71 to 2·58)	(0-56 to 2-14)	(0-36 to 1-83)	(0-57 to 1-72)	(0-33 to 1-30)	(0-17 to 1-82)
-0·36	<u>-0-30</u>	<u>-0-23</u>	-0-10	-0-17	-0-17	-0·15	-0-10	VAL	0-80	0.60	0-73	<u>0-48</u>	0-41
(-0·56 to -0·15)	(-0-50 to -0-10)	(-0-40 to -0-06)	(-0-41 to 0-23)	(-0-38 to 0-05)	(-0-38 to 0-05)	(-0·44 to 0·13)	(-0-37 to 0-18)		(0-47 to 1-37)	(0.30 to 1.20)	(0-51 to 1-05)	(0-28 to 0-8 <u>3)</u>	(0-13 to 1-25)
<u>-0·36</u>	<u>-0-31</u>	<u>-0-24</u>	-0·15	-0-17	-0·18	-0·16	-0·10	-0-01	ZIP	0-75	0-91	0.61	0-52
(-0·56 to -0·15)	(-0-51 to -0-10)	(-0-43 to -0-03)	(-0·44 to 0·16)	(-0-39 to 0-05)	(-0·39 to 0·04)	(-0·45 to 0·14)	(-0·39 to 0·18)	(-0-24 to 0-23)		(0-37 to 1-51)	(0-61 to 1-34)	(0 34 to 1 06)	(0 17 to 1 58)
<u>-0-48</u>	<u>-0-43</u>	<u>-0-36</u>	-0-32	-0-29	-0·29	-0-28	-0-22	-0-13	-0-12	LAM	1·22	0-81	0-69
(-0-77 to -0-19)	(-0·71 to -0·14)	(-0-64 to -0-08)	(-0-67 to 0-06)	(-0-58 to 0-00)	(-0·58 to 0·00)	(-0-63 to 0-08)	(-0-57 to 0-12)	(-0-43 to 0-18)	(-0-43 to 0-19)		(0·67 to 2·21)	(0-40 to 1-65)	(0-21 to 2-30)
<u>-0-56</u>	<u>-0-50</u>	<u>-0-43</u>	<u>-0-37</u>	<u>-0-37</u>	<u>-0-37</u>	<u>-0-36</u>	<u>-0-30</u>	<u>-0-20</u>	<u>-0-20</u>	-0-08	PBO	0-66	0-57
-0-69 to -0-43)	(-0-63 to -0-38)	(-0-54 to -0-32)	(-0-63 to -0-11)	(-0-51 to -0-23)	(-0-51 to -0-23)	(-0-60 to -0-11)	(<u>-0-53 to -0-07</u>)	(-0-37 to -0-04)	(-0-37 to -0-03)	(-0-34 to 0-18)		(0-44 to 1-00)	(0-20 to 1-62)
<u>-0-63</u>	<u>-0-58</u>	<u>-0-51</u>	<u>-0:45</u>	<u>-0-44</u>	<u>-0-45</u>	<u>-0-43</u>	<u>-0-38</u>	<u>-0-28</u>	<u>-0-27</u>	-0-15	-0·07	ТОР	0-85
-0-84 to -0-43)	(<u>-0-78 to -0-37)</u>	(<u>-0-70 to -0-31)</u>	(-0:75 to -0:14)	(-0-66 to -0-23)	(-0-66 to -0-23)	(-0-72 to -0-14)	(-0-66 to -0-09)	(-0-52 to -0-04)	(-0-51 to -0-04)	(-0-46 to 0-15)	(-0·24 \o 0·09)		(0-28 to 2-63)
<u>-0-88</u>	<u>-0-83</u>	<u>-0-76</u>	<u>-0.70</u>	<u>-0-69</u>	<u>-0-69</u>	<u>-0-68</u>	<u>-0-62</u>	-0-53	-0-52	-0-40	-0-32	-0-25	GBT
(-1-40 to -0-36)	(<u>-1-34 to -0-31</u>)	(-1-27 to -0-24)	(<u>-1.21 to -0.18)</u>	(<u>-1-21 to -0-17)</u>	(<u>-1-21 to -0-17)</u>	(-1-23 to -0-12)	(<u>-1-17 to -0-07)</u>	(-1-05 to 0-01)	(-1-05 to 0-01)	(-0-96 to 0-16)	(-0-82 to 0-18)	(-0-77 to 0-28)	
Treatment	Efficacy (SMD with 95%	Crl) 🔲 Drope	out rate (OR wi	th 95% Crl)								<u>11111</u>


effects for dropout rate column <u>ב</u> treatment relative treatment favor the OR>1

significant effects are in bold and competing treatments underscored font Table showing all the pairwise relative treatment effects with their 95% CI for one or two outcomes [Example in Cipriani et al. 2011]


Forest plot with the treatment effects estimates for the pairwise comparisons

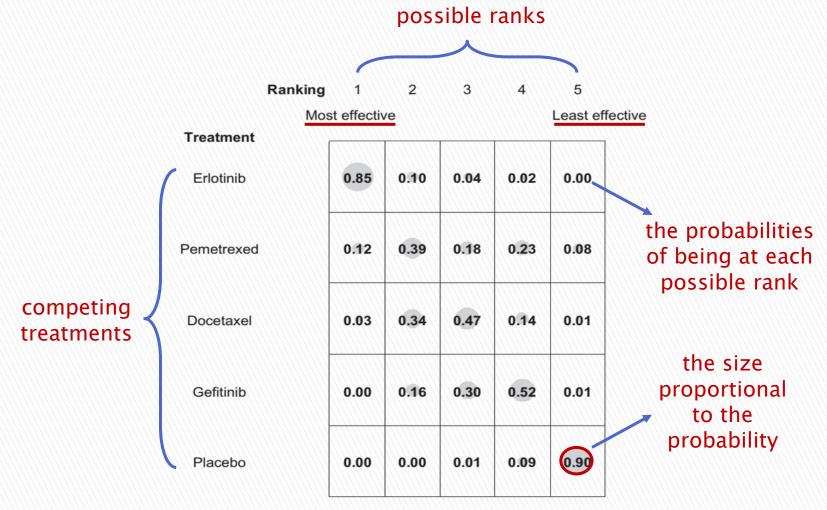
[Examples in Hawkins et al. 2009 & Hoaglin et al. 2011]



with the 95% CI for all pairwise comparisons

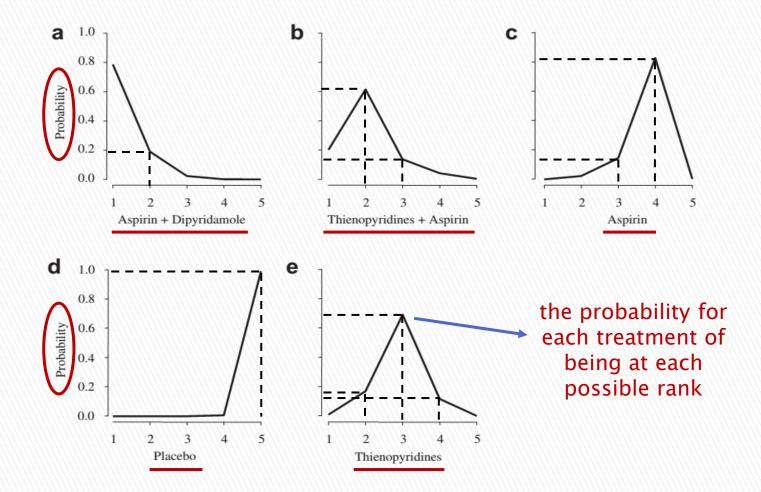
[Example in Senn et al. 2013]

Shade plot showing the p-values of the treatment effects for all pairwise comparisons in the network [Example in Senn et al. 2013]

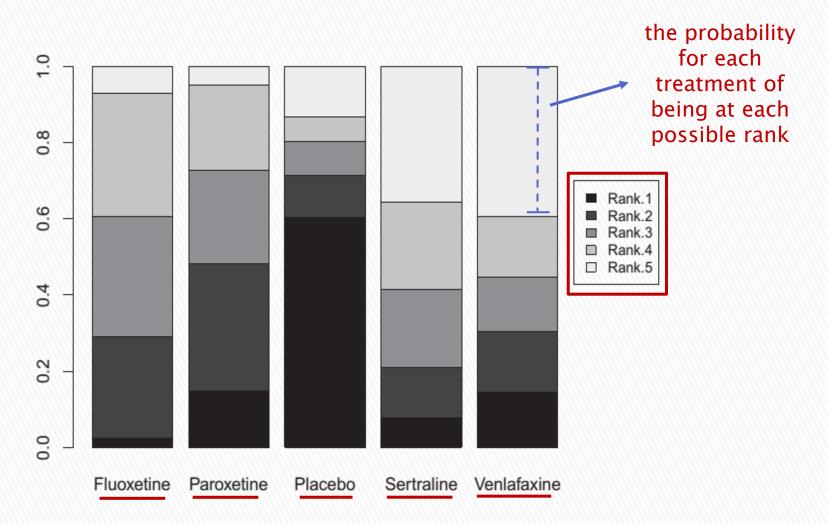


Network graph presenting the relative treatment effects for each pairwise comparison [Example in Fadda et al. 2011]

Presenting the results treatment ranking

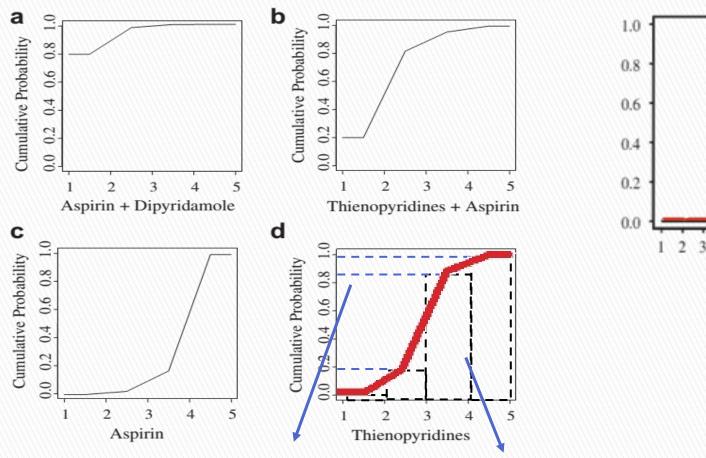

Ranking based on probabilities

- Using probability of being the best
- Using probabilities of being at each possible rank
- Using SUCRAS



'Bubble-plot' including the ranking probabilities for all treatments

[Example in Hawkins et al. 2009]



'Rankograms' showing the probability for each treatment of being at a specific rank [Example in Salanti et al. 2011]

Bar plots showing the probability for each treatment of being at a specific rank [Example in van Valkenhoef et al. 2012]

the cumulative probability for each treatment of being up to each possible rank

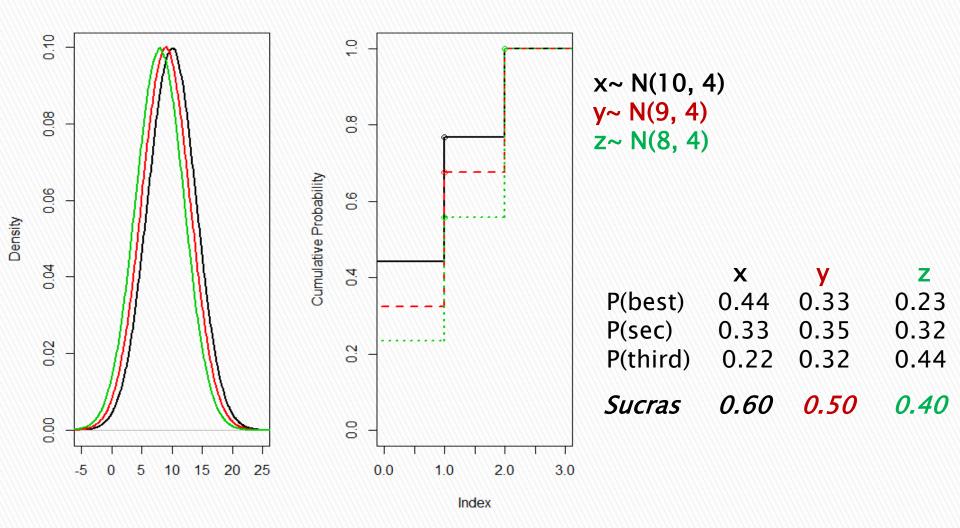
the larger the surface under the curve the 'better' the treatment*it can be also expressed as a percentage*

10 11

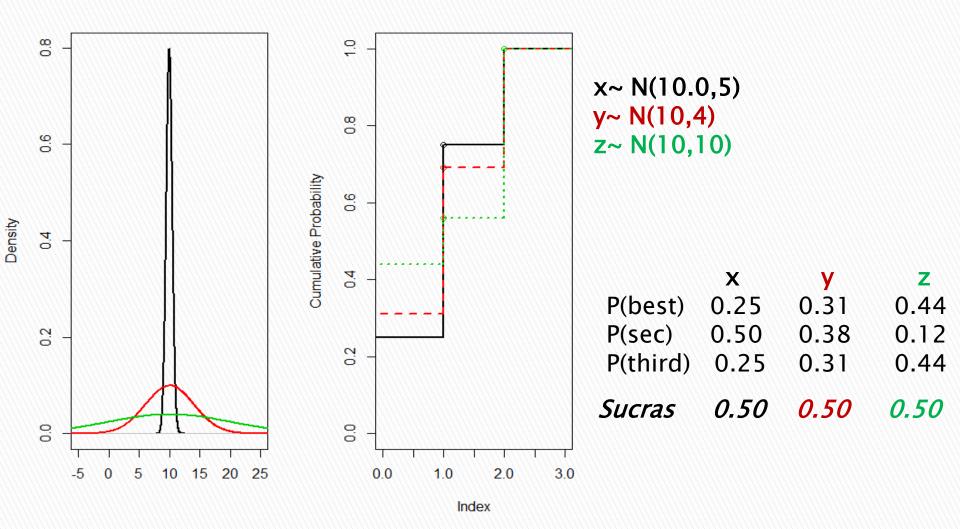
8 9

each line pattern

corresponds to a

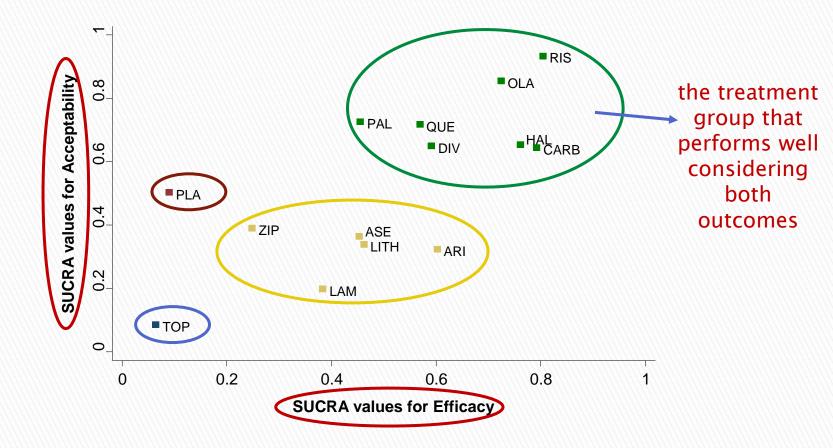

different model

Rank of F


'SUCRA plots' showing the cumulative probability for each treatment of being up to a specific rank [Examples in Salanti et al. 2011 & Salanti et al. 2010]

Ranking based on probabilities – caution is needed

- Using P(best) to rank treatments can be misleading
- Ranking based on SUCRAs accounts better for the uncertainty in the estimated treatment effects


Different means – Equal variances

Equal means – Different variances

Ranking based on probabilities – caution is needed

- Using P(best) to rank treatments can be misleading
- Ranking based on SUCRAs accounts better for the uncertainty in the estimated treatment effects
- SUCRAs are conditional on a set of treatments being compared
 - This means SUCRAs and possibly the ranking will change if the subset of the treatments are compared
- Ranking measures are not a substitute for relative treatment effects
 - They are not the only useful measure for clinicians

Scatterplot showing jointly the ranking results for two different outcomes [Example in Chaimani et al. 2013]

HAL	.47 2.11)	<u>1-49</u>	0-81	1-32	1·11	1-16	0-86	1·16	0-93	0-69	0-85	<u>0-56</u>	0-48
0.95/0		(1-03 to 2-15)	(0-53 to 1-22)	(0-85 to 2-06)	(0·75 to 1·66)	(0-63 to 2-14)	(0-46 to 1-60)	(0·73 to 1·86)	(0-59 to 1-49)	(0-36 to 1-36)	(0-62 to 1-15)	(0-34 to 0-93)	(0-16 to 1-44)
-0-06	RIS	.78 ⁶	<u>0-58</u>	0-94	0-80	0-83	0-62	0-83	0-67	<u>0.50</u>	<u>0-61</u>	<u>0-40</u>	0-34
-0-22 to 0-11)	0.94/0.	1.56)	(0-37 to 0-88)	(0-60 to 1-47)	(0-51 to 1-25)	(0-44 to 1-57)	(0-33 to 1-16)	(0-51 to 1-34)	(0-41 to 1-10)	(0-25 to 0-98)	(0-44 to 0-83)	(0-24 to 0-68)	(0-11 to 1-03)
-0-12	-0-07	OLZ	81 <u>90-79)</u>	0-88	0-75	0.78	0-58	0·78	0-63	<u>0-47</u>	<u>0-57</u>	<u>0-38</u>	<u>0-32</u>
-0-28 to 0-02)	(-0-22 to 0-08)	0.78/0.3		(0-58 to 1-36)	(0-49 to 1-13)	(0.43 to 1.44)	(0-33 to 1-00)	(0·52 to 1·17)	(0-40 to 1-00)	(0-24 to 0-89)	(<u>0-44 to 0-74</u>)	(0-23 to 0-61)	(0-11 to 0-95)
<u>-0·19</u>	-0·13	-0-06	LIT	<u>-63</u>	1-38	1-44	1-07	1-44	1·15	0-86	1-05	0·70	0-60
0·36 to -0·01)	(-0·30 to 0·04)	(-0-22 to 0-10	0.64/0.2	27 <u>to 2-54)</u>	(0-91 to 2-12)	(0-81 to 2-60)	(0-57 to 2-00)	(0-92 to 2-28)	(0·71 to 1·91)	(0-47 to 1-59)	(0-78 to 1-43)	(0·44 to 1·11)	(0-20 to 1-77)
<u>-0·19</u>	-0·13	-0-07	-0-01	QTP		0-88	0.66	0.88	0-71	0-53	<u>0-64</u>	<u>0-43</u>	0-36
0· <u>37 to -0·01)</u>	(-0·31 to 0·04)	(-0-24 to 0-11)	(-0-18 to 0-17	0.64/0.7		(0-46 to 1-70)	(0.34 to 1.25)	(0-53 to 1.46)	(0-42 to 1-20)	(0-27 to 1-05)	(0-45 to 0-91)	(0-25 to 0-73)	(0-12 to 1-10)
<u>-0-19</u>	-0.13	-0·06	-0-01	0.00	ARI	1-04	0-77	1·05	0-84	0-62	0.76	<u>0.50</u>	0-43
0-36 to -0-02)	(-0.31 to 0.05)	(-0·23 to 0·11)	(-0-18 to 0-17)	(-0.19 to 0.20	0.61/0.5	7 (to 1-98)	(0-41 to 1-47)	(0-64 to 1·70)	(0-51 to 1-39	(0-32 to 1-24)	(0.55 to 1.06)	(0.30 to 0.85)	(0-14 to 1-29)
<u>-0·20</u>	-0-14	-0·08	-0-02	-0-01	-0-01	CBZ	0-74	1·00	0-80	0.60	0-73	<u>0-48</u>	0-41
0·36 to -0·01)	(-0-42 to 0-12)	(-0·34 to 0·18)	(-0-28 to 0-24)	(-0-30 to 0-26)	(-0-29 to 0-2	0.60/0.60	34 to 1-62)	(0·52 to 1·91)	(0-41 to 1-59)	(0.27 to 1.33)	(0-42 to 1-28)	(0-25 to 0-96)	(0-13 to 1-37)
<u>-0-26</u>	-0-20	-0·14	-0·08	-0·07	-0-07	-0-06	ASE	1·35	1-08	0-81	0-98	0-65	0-56
-0-52 to -0-01)	(-0-46 to 0-05)	(-0·36 to 0·10)	(-0·41 to 0·27)	(-0·34 to 0·20)	(-0-34 to 0-20)	(-0-39 to 0	0.55/0.36	71 to 2·58)	(0-56 to 2-14)	(0-36 to 1-83)	(0-57 to 1-72)	(0-33 to 1-30)	(0-17 to 1-82)
-0·36	<u>-0-30</u>	<u>-0-23</u>	-0-10	-0-17	-0-17	-0·15	-0-10	VAL	0-80	0.60	0-73	<u>0-48</u>	0-41
0·56 to -0·15)	(-0- <u>50 to -0-10)</u>	(-0-40 to -0-06)	(-0-41 to 0-23)	(-0-38 to 0-05)	(-0-38 to 0-05)	(-0·44 to 0·13)	(-0-37 to (.50/0.48	+47 to 1-37)	(0.30 to 1.20)	(0-51 to 1-05)	(0-28 to 0-8 <u>3)</u>	(0-13 to 1-25)
<u>-0-36</u>	<u>-0-31</u>	<u>-0-24</u>	-0·15	-0-17	-0·18	-0-16	-0-10	-0-0	ZIP	0-75	0·91	0-61	0-52
0-56 to -0-15)	(-0-51 to -0-10)	(-0-43 to -0-03)	(-0·44 to 0·16)	(-0-39 to 0-05)	(-0·39 to 0·04)	(-0-45 to 0-14)	(-0-39 to 0-18)	(-0-24 to 0	.47/0.41	0-37 to 1-51)	(0·61 to 1·34)	(0 34 to 1 06)	(0 17 to 1 58)
<u>-0-48</u>	<u>-0-43</u>	<u>-0-36</u>	-0-32	-0·29	-0-29	-0-28	-0-22	-0-13	-0-1	LAM	1·22	0-81	0-69
0-77 to -0-19)	(-0-71 to -0-14)	(-0-64 to -0-08)	(-0-67 to 0-06)	(-0·58 to 0·00)	(-0-58 to 0-00)	(-0-63 to 0-08)	(-0-57 to 0-12)	(-0-43 to 0-18)	(-0-43 to 0.	40/0.21	0·67 to 2·21)	(0-40 to 1-65)	(0-21 to 2-30)
<u>-0-56</u>	<u>-0-50</u>	<u>-0-43</u>	<u>-0-37</u>	<u>-0-37</u>	<u>-0-37</u>	<u>-0-36</u>	<u>-0-30</u>	<u>-0-20</u>	<u>-0-20</u>	-0-0	PBO	0-66	0-57
0-69 to -0-43)	(-0-63 to -0-38)	(-0-54 to -0-32)	(-0-63 to -0-11)	(-0-51 to -0-23)	(-0-51 to -0-23)	(-0-60 to -0-11)	(<u>-0-53 to -0-07</u>)	(-0-37 to -0-04)	(-0-37 to -0-03)	(-0-34 to 0.	36/0.30	0-44 to 1-00)	(0-20 to 1-62)
<u>-0-63</u>	<u>-0-58</u>	<u>-0-51</u>	<u>-0-45</u>	<u>-0.44</u>	<u>-0-45</u>	<u>-0·43</u>	<u>-0-38</u>	<u>-0-28</u>	<u>-0-27</u>	-0·15	-0·	ТОР	0-85
0-84 to -0-43)	(-0-78 to -0-37)	(-0-70 to -0-31)	(-0-75 to -0-14)	(-0.66 to -0.23)	(-0-66 to -0-23)	(-0·72 to -0·14)	(-0-66 to -0-09)	(-0-52 to -0-04)	(-0-51 to -0-04)	(-0·46 to 0·15)	(-0·24 t 0.2	23/0.09	(0-28 to 2-63)
<u>-0-88</u>	<u>-0-83</u>	<u>-0.76</u>	<u>-0.70</u>	<u>-0.69</u>	<u>-0-69</u>	<u>-0-68</u>	<u>-0-62</u>	-0-53	-0-52	-0-40	-0-32	-0	GBT
1-40 to -0-36)	(-1-34 to -0-31)	(-1.27 to -0.24)	(-1.21 to -0.18)	(-1.21 to -0.17)	(-1-21 to -0-17)	(-1-23 to -0-12)	(-1-17 to -0-07)	(-1-05 to 0-01)	(-1-05 to 0-01)	(-0-96 to 0-16)	(-0-82 to 0-18)	(-0-77 0.1	3/0.12

competing treatments ordered according to their relative ranking for efficacy

Table showing all the pairwise relative treatment effects with their 95% CI for one or two outcomes along with the SUCRA values

References

- Lu G, Welton NJ, Higgins JPT, White IR, Ades AE: Linear inference for mixed treatment comparison metaanalysis: A two-stage approach. *Res Synth Meth* 2011, 2: 43-60.
- Cipriani A, Barbui C, Salanti G, Rendell J, Brown R, Stockton S et al.: Comparative efficacy and acceptability of antimanic drugs in acute mania: a multiple-treatments meta-analysis. Lancet 2011, 378: 1306-1315.
- Fadda V, Maratea D, Trippoli S, Messori A: Network meta-analysis: Results can be summarised in a simple figure. *BMJ* 2011, 342: d1555.
- van VG, Tervonen T, Zhao J, de BB, Hillege HL, Postmus D: Multicriteria benefit-risk assessment using network meta-analysis. *J Clin Epidemiol* 2012, 65: 394-403.
- Hawkins N, Scott DA, Woods BS, Thatcher N: No study left behind: a network meta-analysis in non-small-cell lung cancer demonstrating the importance of considering all relevant data. *Value Health* 2009, 12: 996-1003.
- Salanti G, Marinho V, Higgins JP: A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered. *J Clin Epidemiol* 2009, 62: 857-864.
- Hoaglin DC, Hawkins N, Jansen JP, Scott DA, Itzler R, Cappelleri JC *et al.*: Conducting indirect-treatmentcomparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2. *Value Health* 2011, 14: 429-437.
- Chaimani A, Higgins JPT, Mavridis D, Spyridonos P, Salanti G: Graphical tools for network meta-analysis in STATA. under revision.
- Ioannidis JP: Indirect comparisons: the mesh and mess of clinical trials. *Lancet* 2006, 368: 1470-1472.

- Jonas DE, Wilkins TM, Bangdiwala S, Bann CM, Morgan LC, Thaler KJ et al.: Findings of Bayesian mixed treatment comparison meta-analysis: comparison and exploration using real-word trial data and simulation. (Prepared by RTI-UNC Evidence-Based Practice Center under Contract No. 290-2007-10056-I). AHRQ 2013, Publication No. 13-EHC039-EF. Rockville, MD: Agency for Healthcare Research and Quality.
- Salanti G, Ades AE, Ioannidis JP: Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. *J Clin Epidemiol* 2011, 64: 163-171.
- Senn S, Gavini F, Magrez D, Scheen A: Issues in performing a network meta-analysis. *Stat Methods Med Res* 2013, 22: 169-189.