

Statistical considerations in indirect comparisons and network meta-analysis

Said Business School, Oxford, UK March 18-19, 2013

Handout S6-L
Introduction

Tianjing Li

Acknowledgements

• Georgia Salanti

Outline

- Fixed and random-effects meta-regression
- Some pitfalls and software options
- Indirect comparisons using meta-regression
- Network meta-analysis using meta-regression
- Example

Fixed-effect

Versus Random-effects

Figure 11.1 Fixed-effect model - true effects.

Figure 11.2 Fixed-effect model - true effects and sampling error.

Figure 11.3 Fixed-effect model – distribution of sampling error.

Figure 12.2 Random-effects model – true effects.

Figure 12.3 Random-effects model - true and observed effect in one study.

Figure 12.4 Random-effects model – between-study and within-study variance.

Meta-analysis as a multilevel model (hierarchical model) and a linear model

Fixed-effect model

$$y_i \sim N(\theta, v_i)$$

$$y_i = \theta + e_i$$

$$e_i \sim N(0, v_i)$$

Meta-analysis as a multilevel model (hierarchical model) and a linear model

Fixed-effect model

$$y_i \sim N(\theta, v_i)$$

 $y_i = \theta + e_i$

Random-effects model

$$y_i \mid \theta_i \sim N(\theta_i, v_i)$$

$$\theta_i \sim N(\mu, \tau^2)$$

$$e_i \sim N(0, v_i)$$

$$y_{i} = \mu + \delta_{i} + e_{i}$$

$$\delta_{i} \sim N(0, \tau^{2})$$

$$e_{i} \sim N(0, v_{i})$$

Meta-regression models

- Models earlier generalize naturally to a regression framework
- Fixed-effect model

$$y_i \sim N\left(\theta + \sum_j \beta_j x_{ij}, v_i\right)$$

$$y_{i} = \theta + \sum_{j} \beta_{j} x_{ij} + e_{i}$$

$$e_{i} \sim N(0, v_{i})$$

Random-effects model

$$y_{i} \mid \theta_{i} \sim N \left(\theta_{i} + \sum_{j} \beta_{j} x_{ij}, v_{i} \right)$$
$$\theta_{i} \sim N \left(\mu, \tau^{2} \right)$$

$$y_{i} = \mu + \delta_{i} + \sum_{j} \beta_{j} x_{ij} + e_{i}$$

$$\delta_{i} \sim N(0, \tau^{2})$$

$$e_{i} \sim N(0, v_{i})$$

Random-effects meta-regression

Mean treatment effect = intercept + slope $\times x$

Fixed-effect meta-regression

 "In general, it is an unwarranted assumption that all the heterogeneity is explained by the covariate, and the betweentrial variance should be included as well, corresponding to a "random-effects" analysis."

(Thompson 2001 Systematic Reviews in Health Care Ch. 9)

- Fixed-effect meta-regression has a high false-positive rate when there is heterogeneity
- "Fixed-effect meta-regression should not be used" (Higgins and Thompson 2004 Statistics in Medicine)

Common pitfall: confounding

- Meta-regression looks at observational relationships
 - even if the studies are randomized controlled trials
- A relationship may not be causal
- Confounding (due to co-linearity) is common

Common pitfall: confounding

- Meta-regression looks at observational relationships
 - even if the studies are randomized controlled trials
- In indirect comparisons, confounding equates to lack of transitivity

Common pitfall: lack of power

- Unfortunately most meta-analyses do not have many studies
- Meta-regression typically has low power to detect relationships
- Model diagnostics / adequacy difficult to assess

Software for meta-regression

Stata

• metareg : random-effects meta-regression

• **vwls** : fixed-effect meta-regression

WinBUGS

A natural extention to the model

SAS

See van Houwelingen et al (2002)

Comprehensive Meta-analysis

Single covariate only in CMA 2; multiple in next version

RevMan

Not available

Trial	Comparison	Dummy code
1	B vs A	0
2	B vs A	0
3	C vs A	1
4	C vs A	1
5	C vs A	1

Trial	Comparison	Dummy
1	B vs A	0
2	B vs A	0
3	C vs A	1
4	C vs A	1
5	C vs A	1

Meta-regression on these data will produce

• Intercept:

Trial	Comparison	Dummy code
1	B vs A	0
2	B vs A	0
3	C vs A	1
4	C vs A	1
5	C vs A	1

Meta-regression on these data will produce

Intercept: B vs A

• Slope:

Trial	Comparison	Dummy code
1	B vs A	0
2	B vs A	0
3	C vs A	1
4	C vs A	1
5	C vs A	1

Meta-regression on these data will produce

Intercept: B vs A

Slope: (C vs A) – (B vs A)
 = C vs B

... in more detail

Trial	Comparison	Intercept	Dummy code
1	B vs A	1	0
2	B vs A	1	0
3	C vs A	1	1
4	C vs A	1	1
5	C vs A	1	1

Meta-regression on these data will produce

Intercept: B vs A

Slope: (C vs A) – (B vs A)
 = C vs B

Adding the other comparison

Trial	Comparison	Intercept	Dummy code 1	Dummy code 2
1	B vs A	1	0	0
2	B vs A	1	0	0
3	C vs A	1	1	0
4	C vs A	1	1	0
5	C vs A	1	1	0
6	B vs C	1	0	1
7	B vs C	1	0	1

Meta-regression on these data will produce

- Intercept: B vs A
- Slope 1:
 (C vs A) (B vs A)
 = C vs B
- Slope 2:
 (B vs C) (B vs A)
 = A vs C
- But this does NOT impose our consistency equation^{*}

^{*}In fact it's an 'inconsistency model'

For mixed comparisons and network MA: Alternative coding: drop the intercept

Trial	Comparison	Dummy code 1	Dummy code 2
1	B vs A	1	0
2	B vs A	1	0
3	C vs A	0	1
4	C vs A	0	1
5	C vs A	0	1
6	C vs B	-1	1
7	C vs B	-1	1

A is used as the reference.

Meta-regression on these data will produce

- B vs A: Slope 1
- C vs A: Slope 2
- C vs B: Slope 2 Slope 1

General coding algorithm

- Choose a reference treatment (let's say A)
- Create a dummy variable for all treatments other than A
 (k = B, C, ...)
- Code dummy k as
 - 1 if treatment k is the non-reference arm in that trial
 - −1 if treatment k is the reference arm in that trial
 - 0 otherwise
- Omit the intercept in the meta-regression
- The dummy variables correspond to basic parameters
- Other comparisons computed from these: functional parameters

Coding and meta-regression

 With 3 treatments and AC, AB, BC studies, chose A as reference, so AB and AC are basic parameters

$$y_{i} = \beta_{1} x_{i1} + \beta_{2} x_{i2} + \delta_{i} + e_{i}$$

$$y_{i} = \mu_{AB} I_{iAB} + \mu_{AC} I_{iAC} + \delta_{i} + e_{i}$$

- The AB studies have (1,0), the AC studies (0,1) [basic]
- BC studies have (1,-1) [functional] if coded as B-C [=(B-A)-(C-A)]
- BC studies have (-1,1) [functional] if coded as C-B [=(C-A)-(B-A)]
- So it helps to have a convention: e.g. Code BC as C-B
 ('bigger' 'smaller' letter)

Limitations

- To use standard meta-regression software (e.g. metareg)
 - cannot deal with trials with more than two treatments
 - must assume the same heterogeneity variance for every comparison
 - cannot rank treatments easily

Example: treatments for MI

Choose basic parameters

Write all other contrasts as linear functions of the basic parameters to build the design matrix 25

No. studies	Streptokinase	t-PA	Anistreplase	Acc t-PA	Angioplasty	Reteplase
3	Ref	1	0	0	0	0
1	Ref	0	1		0	0
1	Ref	0	0	1	0	0
3	Ref	0	0	0	1	0
1	Ref	0	0	0	0	1
1						
2						
2						
2						

$$y_i = \mu_{tPA-S} \mathsf{tPA}_i + \mu_{Anist-S} \mathsf{Anist}_i + \mu_{AcctPA-S} \mathsf{AcctPA}_i + \mu_{Ang-S} \mathsf{Ang}_i + \mu_{Ret-S} \mathsf{Ret}_i + \delta_i + e_i$$

No. studies	Streptokinase	t-PA	Anistreplase	Acc t-PA	Angioplasty	Reteplase
3	Ref	1	0	0	0	0
1	Ref	0	1		0	0
1	Ref	0	0	1	0	0
3	Ref	0	0	0	1	0
1	Ref	0	0	0	0	1
1	Ref	-1	1	0	0	0
2	Ref	-1	0	0	1	0
2	Ref	0	0	-1	1	0
2	Ref	0	0	-1	0	1

Design matrix

- The consistency equations are built into the design matrix
- This minimizes the number of parameters and allows us to gain precision

yμ ×δ +e +
$$δ \sim N \left(\mathbf{0}, \operatorname{diag} \left\{ \tau^2 \right\} \right)$$
e ~ $N \left(\mathbf{0}, \operatorname{diag} \left\{ v_i \right\} \right)$

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_{tPA-S} \\ \mu_{Anist-S} \\ \mu_{AcctPA-S} \\ \mu_{Ang-S} \\ \mu_{Ret-S} \end{pmatrix}$$

Results: treatments for MI

Regression coefficients, μ	Log OR (SE)
t-PA	-0.02 (0.03)
Anistreplase	-0.00 (0.03)
Accelerated t-PA	-0.15 (0.05)
Angioplasty	-0.43 (0.20)
Reteplase	-0.11 (0.06)

• We obtain other comparisons by computing linear combinations of these, taking into account their variance-covariance matrix

Summary

- Meta-regression examines the relationship between treatment effects and one or more study-level characteristics
- Meta-analysis is a meta-regression with no covariates
- Network meta-analysis is a meta-regression with dummy variables for the treatments
- Standard meta-regression cannot deal with trials with more than two treatments
- Standard meta-regression assumes the same heterogeneity variance for every comparison

References

- Harbord RM, Higgins JPT. Meta-regression in Stata. Stata Journal 2008; 8: 493-519
- Higgins JPT, Thompson SG. Controlling the risk of spurious results from meta-regression. *Statistics in Medicine* 2004; **23**: 1663-1682
- Lumley T. Network meta-analysis for indirect treatment comparisons. *Stat Med* 2002; **21**: 2313-24.
- Salanti G, Higgins JPT, Ades AE, Ioannidis JPA. Evaluation of networks of randomized trials. *Stat Meth Med Res* 2008; **17**: 279-301.
- Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 2002; 21: 1559-1574
- Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. *Statistics in Medicine* 1999; **18**: 2693-2708
- van Houwelingen HC, Arends LR, Stijnen T. Tutorial in Biostatistics: Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine 2002; 21: 589–624