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Figure 11.1 Fixed-effect model - true effects.
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Figure 11.2 Fixed-effect model — true effects and sampling error.
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Figure 11.3 Fixed-effect model — distribution of sampling error.

Versus

Random-effects
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Figure 12.2 Random-effects model — true effects.
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Figure 12.3 Random-effects model — true and observed effect in one study.
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Figure 12.4 Random-effects model — between-study and within-study variance.



Meta-analysis as a multilevel model
(hierarchical model) and a linear model

e Fixed-effect model
y,-“‘N(G,V,-) y.=0+e,

e,~N(0,v,)



Meta-analysis as a multilevel model
(hierarchical model) and a linear model

e Fixed-effect model
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Meta-regression models

e Models earlier generalize naturally to a regression framework

e Fixed-effect model

y."N[ O+ ) P.x.,v, yi=0+ > Px; +e
2 Y ) 2 o e,"'N(O,v,)
e Random-effects model
yi|6i~N(6i+E[3ij,v,) yi=M+6’+Eﬁinj+ei
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Random-effects meta-regression

Explanatory
variable, x /

P

Treatment
effect



Fixed-effect meta-regression

e “In general, it is an unwarranted assumption that all the
heterogeneity is explained by the covariate, and the between-
trial variance should be included as well, corresponding to a

“random-effects” analysis.”
(Thompson 2001 Systematic Reviews in Health Care Ch. 9)

e Fixed-effect meta-regression has a high false-positive rate
when there is heterogeneity

e “Fixed-effect meta-regression should not be used”
(Higgins and Thompson 2004 Statistics in Medicine)
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Common pitfall: confounding

e Meta-regression looks at observational relationships

— even if the studies are randomized controlled trials

e A relationship may not be causal

e Confounding (due to co-linearity) is common

Treatment
effect
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Confounder

(associated with
treatment effect and
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Common pitfall: confounding

e Meta-regression looks at observational relationships
— even if the studies are randomized controlled trials

e |nindirect comparisons, confounding equates to lack of transitivity

Treatment Treatments :
. Quality
effect being compared
Confounder

(associated with
treatment effect and

comparison) 12



Common pitfall: lack of power

e Unfortunately most meta-analyses do not have many studies
e Meta-regression typically has low power to detect relationships

e Model diagnostics / adequacy difficult to assess
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Software for meta-regression

Stata

« metareg :random-effects meta-regression
e vwls : fixed-effect meta-regression
WinBUGS

e A natural extention to the model

SAS

e See van Houwelingen et al (2002)
Comprehensive Meta-analysis

e Single covariate only in CMA 2; multiple in next version
RevMan

e Not available
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Indirect comparison using meta-regression

Trial Comparison Dummy

code
1 BvsA 0
2 BvsA 0
3 CvsA 1
4 CvsA 1
5 CvsA 1



Indirect comparison using meta-regression

- | Meta-regression on these
rial Comparison Dummy .
code data will produce
1 BvsA 0 e |ntercept:
2 BvsA 0
3 CvsA 1
4 CvsA 1
3 CvsA 1



Indirect comparison using meta-regression

- | Meta-regression on these
rial Comparison Dummy _
code data will produce
1 BvsA 0 e |ntercept:Bvs A
2 BvsA 0
3 CvsA 1 * Slope:
4 CvsA 1
3 CvsA 1



Indirect comparison using meta-regression

- | Meta-regression on these
rial Comparison Dummy .
code data will produce
1 BvsA 0 e |ntercept:Bvs A
2 BvsA 0
3 Cvs A 1 e Slope: (CvsA)—(BvsA)
=CvsB
4 CvsA 1
3 CvsA 1



... in more detail

| | Meta-regression on these
Trial Comparison Intercept Dummy _
code data will produce
1 BvsA 1 0 e |ntercept:Bvs A
2 BvsA 1 0
3 C vs A 1 1 e Slope: (Cvs A)—(Bvs A)
=CvsB
4 CvsA 1 1
5

CvsA 1 1



Trial

N~ OO o1 B~ W DN

Adding the other comparison

Comparison

BvsA
BvsA
CvsA
CvsA
CvsA
BvsC
BvsC

Intercept Dummy

code 1
1 0
1 0
1 1
1 1
1 1
1 0
1 0

*In fact it’s an ‘inconsistency model’

Dummy
code 2

0
0
0
0
0

1
1

Meta-regression on
these data will
produce

e Intercept: Bvs A

e Slope 1:
(Cvs A) — (B vs A)
=CvsB

e Slope 2:

(Bvs C)—(Bvs A)
=AvsC

e But this does NOT
Impose our
consistency equationsb




For mixed comparisons and network MA:
Alternative coding: drop the intercept

frial— Comparison  Dummy - Dummy | A'js ysed as the reference.
code1 code 2 .
1 B vs A 1 0 Meta-regressmn on these
data will produce
2 BvsA 1 0 * Bvs A:Slopel
3 CvsA 0 1
4 Cvs A 0 1 e CvsA:Slope 2
) CvsA 0 1
e CvsB:Slope 2 -Slopel
6 CvsB —1 1
! CvsB —1 1
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General coding algorithm

Choose a reference treatment (let’s say A)

Create a dummy variable for all treatments other than A
(k=8B,C,..)

Code dummy k as
1 if treatment k is the non-reference arm in that trial
-1 if treatment k is the reference arm in that trial
0 otherwise
Omit the intercept in the meta-regression

The dummy variables correspond to basic parameters
Other comparisons computed from these: functional parameters
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Coding and meta-regression

e With 3 treatments and AC, AB, BC studies, chose A as reference, so
AB and AC are basic parameters

y. =P, +P,x, +0, +e
Vi =Wagliag + Wacliac + 6/' +6
e The AB studies have (1,0), the AC studies (0,1) [basic]

e BC studies have (1,-1) [functional] if coded as B-C [=(B-A)-(C-A)]
e BC studies have (-1,1) [functional] if coded as C-B [=(C-A)-(B-A)]

e So it helps to have a convention: e.q. Code BC as C-B

(‘bigger’ - ‘smaller’ letter) )2



Limitations

e To use standard meta-regression software (e.g. metareg)
— cannot deal with trials with more than two treatments

— must assume the same heterogeneity variance for every
comparison

— cannot rank treatments easily
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Example: treatments for Ml

t-PA
Streptokinase
Retaplase
Angioplasty
Lumley 2002

Anistreplase

Acc t-PA

Choose basic parameters

Write all other contrasts as
linear functions of the basic
parameters to build the
design matrix 25



No. studies | Streptokinase t-PA Anistreplase Acc t-PA Angioplasty Reteplase
3 Ref 1 0 0 0 0
1 Ref 0 1 0 0
1 Ref 0 0 0 0
3 Ref 0 0 1 0
1 Ref 0 0 0 1
1
2
2
2
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Vi =Wepa_stPA; + 1, cANiSt, + W, o dACCIPA, +1,  ANg, + U, Ret, +0, +g,

Use as ‘covariates’

- N\ \ N
No. studies | Streptokinase t-PA Anistreplase Acc t-PA Angioplasty Reteplase
3 Ref 1 0 0 0 0
1 Ref 0 1 0 0
1 Ref 0 0 1 0 0
3 Ref 0 0 0 1 0
1 Ref 0 0 0 0 1
1 Ref -1 1 0 0 0
2 Ref -1 0 0 1 0
2 Ref 0 -1 1 0
2 Ref 0 -1 0 1
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Design matrix

e The consistency equations are

1 0 0 00
built into the design matrix 1 0 0 00
e This minimizes the number of 1 0000
: 0 1 0 00
parameters and allows us to gain 05 0 1 0 o
precision 00 0 10 ([ Wepa_s )
0 0 0 01 MAnist—S
0 0 0 0 1
X= 00 0 0 1 L= MAcctPA—S
-1 1 0 00 Wang-s
yi= X0 +e + -1 0 0 10 | Mger-s
-1 0 0 10
6"‘N(0,diag{rz}) 0 0 -110
O 0 -1 1 0
e~N(0,diag{v,}) 0 0 -101
0 0 -1 0 1
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Results: treatments for Ml

Regression coefficients, u Log OR (SE)
t-PA -0.02 (0.03)
Anistreplase —-0.00 (0.03)
Accelerated t-PA -0.15 (0.05)
Angioplasty -0.43 (0.20)
Reteplase -0.11 (0.06)

e We obtain other comparisons by computing linear combinations of
these, taking into account their variance-covariance matrix
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Summary

Meta-regression examines the relationship between treatment
effects and one or more study-level characteristics

Meta-analysis is a meta-regression with no covariates

Network meta-analysis is a meta-regression with dummy variables
for the treatments

Standard meta-regression cannot deal with trials with more than
two treatments

Standard meta-regression assumes the same heterogeneity
variance for every comparison
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