Holger Schünemann

Director, Cochrane Canada

Chair and Professor

Dept. of Health Research Methods, Evidence & Impact*

Professor of Medicine | McMaster University

*formerly "Clinical Epidemiology and Biostatistics"

@schunemann_mac @CochraneCanada

GRADE Training

Disclosures

GRADE working group Co-chair

No direct financial COI

Views expressed my own

Today

Before Coffee

- Considering and understanding PICOs
- Your SoF Table
- Understand GRADEpro
- Assessing Evidence Understand GRADE

Coffee to lunch

Assessing the certainty – Do GRADE

Lunch to afternoon break

Complete your SoF Table

A clinically sensible question

Population: impact of

In patients with (lung) cancer, what is the

Intervention: (comparison)

heparin compared with no heparin

Outcomes: death,

on the risk for venous thromboembolism, bleeding, burden...?

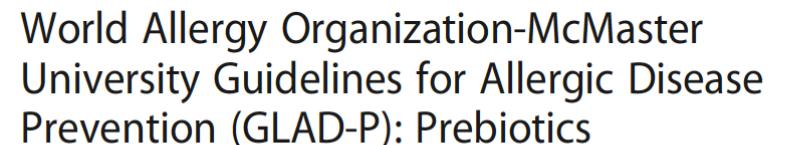
Questions

Should be practice NOT evidence driven

Good questions...

Questions you have when trying to decide what to prescribe/recommend to your patient

Questions you have when trying to decide what to provide in your country/region/ clinic


What should you do with the person in front of you?

Outcomes

Should be importance driven NOT evidence driven

POSITION ARTICLE AND GUIDELINES

Open Access

Carlos A. Cuello-Garcia^{1,2}, Alessandro Fiocchi^{3†}, Ruby Pawankar^{4†}, Juan José Yepes-Nuñez^{1,5}, Gian Paolo Morgano¹, Yuan Zhang¹, Kangmo Ahn⁶, Suleiman Al-Hammadi⁷, Arnav Agarwal⁸, Shreyas Gandhi⁸, Kirsten Beyer⁹, Wesley Burks¹⁰, Giorgio W. Canonica¹¹, Motohiro Ebisawa¹², Rose Kamenwa¹³, Bee Wah Lee¹⁴, Haiqi Li¹⁵, Susan Prescott¹⁶, John J. Riva^{1,17}, Lanny Rosenwasser¹⁸, Hugh Sampson¹⁹, Michael Spigler²⁰, Luigi Terracciano²¹, Andrea Vereda²², Susan Waserman²³, Holger J. Schünemann^{1,23*} and Jan L. Brożek^{1,23}

^{*} Correspondence: holger.schunemann@mcmaster.ca

[†]Equal contributors

¹Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, ON, Canada

3. Should prebiotics vs. no prebiotics be used in infants?

Depends on the outcomes

For the question comparing cryotherapy performed by a doctor or a non-physician.

Please rate the outcome on a scale from 1 (least important) to 9 (most critical). Note: You can rate multiple outcomes with the same number.

Note. Tou can rate maniple o									
	1	2	3	4	5	6	7	8	9
cervical cancer incidence	\circ	0	\circ	0	0	0	0	0	\circ
recurrence of CIN/cure rates	0	0	0	0	0	0	0	0	0
retreatment rates	0	\circ	\circ	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	\bigcirc
major bleeding (requiring hospital admission or blood transmission with no long term sequelae)	\circ	0	0	0	0	0	0	0	0
minor bleeding (e.g. spotting)	\bigcirc								
major infection (requiring hospital admission and antibiotics, no long term sequelae)	0	0	0	0	0	0	0	0	0
minor infection (requiring outpatient treatment only)	\bigcirc	\circ							
all severe adverse events (including major bleeding, major infections, etc.)	0	0	0	0	0	0	0	0	0
all minor adverse events (including minor bleeding, minor infection, discharge, flushing, feeling faint, etc.)	0	0	0	0	0	0	0	0	0
pain (requiring local treatment)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ	\circ	\circ
feeling faint	\bigcirc								
flushing	\bigcirc	\circ							
discharge	\bigcirc								
resource use (including cost, human resources and length of stay)	0	0	0	\circ	\circ	0	0	\circ	0
acceptability to providers (please clarify acceptability)	0	0	\circ						
acceptability to women (please clarify acceptability)	\bigcirc	\circ	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
referrals after cryotherapy for complications or follow-up treatment	0	0	0	0	0	0	0	0	0
HIV transmission (HIV infection, HIV shedding)	\bigcirc	\circ	0						

Not everything that is measured is important and not everything that is important is measured

That may be particularly true for outcomes in nutrition research

- Lab values patient important outcomes?
- Vitamin D levels, carotenoid levels, etc.

Choose outcomes

Establish methods for rating the relative importance of outcomes:

- Consultation with consumers and stakeholders (e.g., survey)
- Systematic review of consumers and stakeholders' views
- Input of panelists (including consumers and stakeholders): informal vs. formal and structured

Choosing outcomes

Generate a list of outcomes (from literature, from the panel, from clinical experts, from patient groups)

Issues

Surrogate outcomes

- Outcomes that are relatively infrequent or occur over a long period of time
- Use substitutes or surrogates
- May not be important to decision making

e.g. IgE levels, biopsy gastrointestinal tract vs diarrhoea, weight loss

Other issues

"we will not find any data for"

Do not exclude outcomes for which you think there will not be data

Do not let little data influence the ranking of the outcome (if it's critical, it is critical)

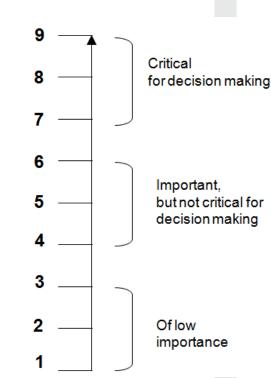
Choosing outcomes

Generate a list of outcomes (from literature, from the panel, from clinical experts, from patient groups)

Ask panel to rank the outcomes by importance (anonymous)

Approach to outcome determination

Desirable outcomes


- Lower mortality
- reduced hospital stay
- Pulmonary embolism

Undesirable outcomes

- Adverse reactions
- Major bleeding

→ Consider desirable and undesirable outcomes explicitly

Not more than ~7 outcomes (SoF Tables)

TASK

Rate the relative importance of the outcome for decision-making (i.e. formulating a recommendation) of each outcome on a scale from 1 to 9. The meaning of the ratings are:

- 1-3 are of limited or no importance for decision-making
- 4-6 are important, but not critical for decision-making
- 7–9 are critical for decision-making.

Again, you can use the same rating for different outcomes more than once.

Importance of an outcome

RATING SCAL	E:							
1	2	3	4	5	6	7	8	9
•								•
of least importance								of most importance
INTERPRETAT	ION FOR DE	CISION MAR	KING:					
of limit	ed import	ance	importa	nt, but no	t critical		critical	

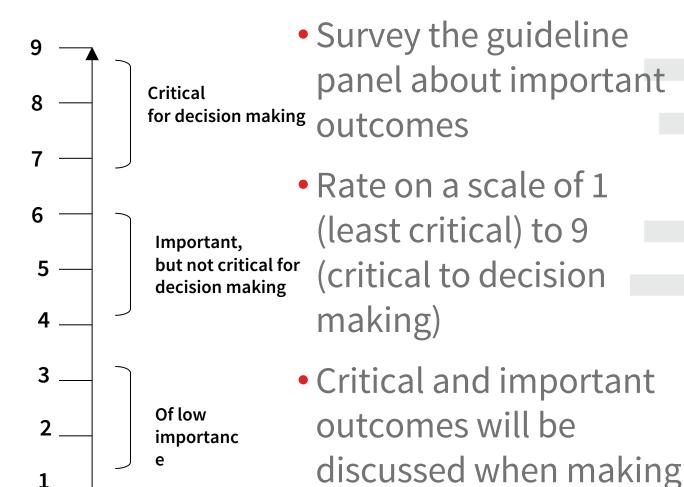
Click Next to proceed to the Outcome Importance Rating.

RATING SCA	LE:									
1	2	3	4	5	6	7	8	9		
of least importance								of most importance		
of limit	ed importa	ance	importa	nt, but no	t critical	Critical				
for ma	king a decis	sion	for making a decision			for making a decision				
(not include	d in evidend	ce profile)	(included in evidence profile)) (included in evidence profile)				

Outcome	Your rating of importance (1 to 9)	Group rating of importance (1 to 9)		de in e profile
			Yes	No

3. Outcomes for treatments Exit this survey

1. OUTCOMES FOR TREATMENT OPTIONS (cold knife conization, cryotherapy and LEEP)


Choose the most important outcomes for decision making: Consider outcomes that might be important to someone making a decision to use or not to use the treatment (make sure to rank benefits and adverse effects)

Rate the relative importance of each outcome on a 9 point scale ranging from 1 (not important) to 9 (critical). You can use the same rating several times (i.e. same number for more than one outcome).

- 1 3 not important,
- 4 6 important, but not critical for making a decision
- 7 9 critical for making a decision

	1 (not important)	2	3	4	5	6	7	8	9 (critical)
Residual/recurrent CIN 2,3 (after 6, 12 months and 24 months)	0	0	0	0	0	0	0	0	0
HPV negative (after 6, 12 and 24 months)	J	J	J	J	J	J	J	J	J
Pelvic Inflammatory Disease	0	0	0	0	0	0	0	0	0
Major infections (requiring hospital admission and antibiotics)		J	J)	J	J	J	J	J
Premature delivery	0	0	0	0	0	0	0	0	0
infertility	J	J	J	J	J	J	J	J	J
maternal death	0	0	0	0	0	0	0	0	0
fetal/neonatal spontaneous abortions	J	J	J)	J	J	J	J	J
Major Bleeding (requires hospitalization/blood transfusion)	0	0	0	0	0	0	0	0	0
Minor bleeding (requires packing or suturing)	J	J	J	J	J	J	J	J	J
Damage to other organs/other surgery required – such as injury to bladder or urethra	0	0	0	0	0	0	0	0	0
Comments or other outcomes (indicate not important, important, critical)									
			_						

How do you rate outcomes?

recommendations

Choosing outcomes

Generate a list of outcomes (from literature, from the panel, from clinical experts, from patient groups)

Ask panel to rate the outcomes by importance (anonymous)

Calculate the mean or median rating for each outcome (between 1-9)

Identify outcomes with large variability in rating, discuss these with panel

OUTCOMES	IMPORTANC E
resource use (including cost, human resources and length of stay)	8.00
CIN 2-3	7.68
cervical carcinoma incidence	7.53
acceptability to women (e.g. satisfaction with process or provider, DOES NOT include incidence of adverse events)	7.53
referrals after cryotherapy for complications or follow-up treatment	7.53
acceptability to providers	7.42
HIV transmission (HIV acquisition, HIV shedding)	7.42
all severe adverse events (i.e. a composite outcome including major bleeding, major infections, etc.)	7.37
major infection (requiring hospital admission and antibiotics)	7.05
major bleeding (requiring hospital admission or blood transmission)	7.00
Mortality	6.53
Fertility (e.g. conception)	5.95
CIN (1 or 2-3)	5.58
Spontaneous abortion	5.47
pain (requiring local treatment)	5.11
Maternal morbidity	4.95
minor infection (requiring outpatient treatment only)	4.26

Answer Options	1 (least importa nt)	2	3	4	5	6	7	8	9 (critical)	Rating Averag e
cervical carcinoma incidence	0	1	0	1	2	1	1	3	10	7.53
CIN (1 or 2-3)	2	0	4	1	3	1	2	2	2	3.98

Choosing outcomes

Generate a list of outcomes (from literature, from the panel, from clinical experts, from patient groups)

Ask panel to rate the outcomes by importance (anonymous)

Calculate the mean or median rating for each outcome (between 1-9)

Identify outcomes with large variability in rating, discuss these with panel

Obtain agreement on rating of outcomes

Critical and important outcomes are included

Risks of not ranking outcomes

Confusion: guideline panels typically cannot balance more than 5 to 7 outcomes

++ evidence retrieval of outcomes that will not be important in decision making (e.g. minor side effects)

Surprises and risk for conflicts of interest to occur

A sensible health care question

Population: In infants,

what is the impact of using prebiotics compared with

not using prebiotics on

eczema (general), allergic rhinitis, asthma, food allergy, any allergy, adverse events, nutritional status

Outcomes:

Intervention:

(comparison)

PICO

Prebiotics compared to no prebiotics for prevention of allergies

Patient or population: prevention of allergies (160315)
Setting: ambulatory care
Intervention: prebiotics
Comparison: no prebiotics

Outcome № of participants	Relative effect (95% CI)	Anticipated absolu	te effects (95% CI)		Quality	What happens /comments
(studies)	(93 / 601)	Without With prebiotics Difference prebiotics				
Eczema (general) assessed with: clinical criteria and/or parent definition follow up: range 3 to 24 months to Nº of participants: 2030 (6 RCTs)	RR 0.68 (0.40 to 1.15)	18.7%	12.7% (7.5 to 21.5)	6.0% fewer (11.2 fewer to 2.8 more)	⊕⊕ LOW a,b,c,d	
Allergic rhinitis assessed with: clinical criteria № of participants: (0 studies)	not estimable	0.0%	0.0% (0.0 to 0.0)	0.0% fewer (0 fewer to 0 fewer)	- ď	None of the studies assessed allergic rhinitis symptoms as an outcome
Asthmal assessed with: "recurrent wheezing", or self-reported or proxy reported asthma follow up: range 18 to 24 months to № of participants: 249 (2 RCTs)	RR 0.37 (0.17 to 0.80)	17.4%	6.4% (3.0 to 13.9)	10.9% fewer (14.4 fewer to 3.5 fewer)	₩ VERY LOW .e.f	

[Intervention Review]

Hip protectors for preventing hip fractures in older people

Nancy Santesso¹, Alonso Carrasco-Labra², Romina Brignardello-Petersen²

¹Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada. ²Evidence Based Dentistry Unit, Faculty of Dentistry, University of Chile, Santiago, Chile

Contact address: Nancy Santesso, Department of Clinical Epidemiology and Biostatistics, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada. santesna@mcmaster.ca.

Editorial group: Cochrane Bone, Joint and Muscle Trauma Group.

Publication status and date: New search for studies and content updated (conclusions changed), published in Issue 3, 2014. Review content assessed as up-to-date: 18 June 2013.

Citation: Santesso N, Carrasco-Labra A, Brignardello-Petersen R. Hip protectors for preventing hip fractures in older people. *Cochrane Database of Systematic Reviews* 2014, Issue 3. Art. No.: CD001255. DOI: 10.1002/14651858.CD001255.pub5.

Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Systematic review for group work

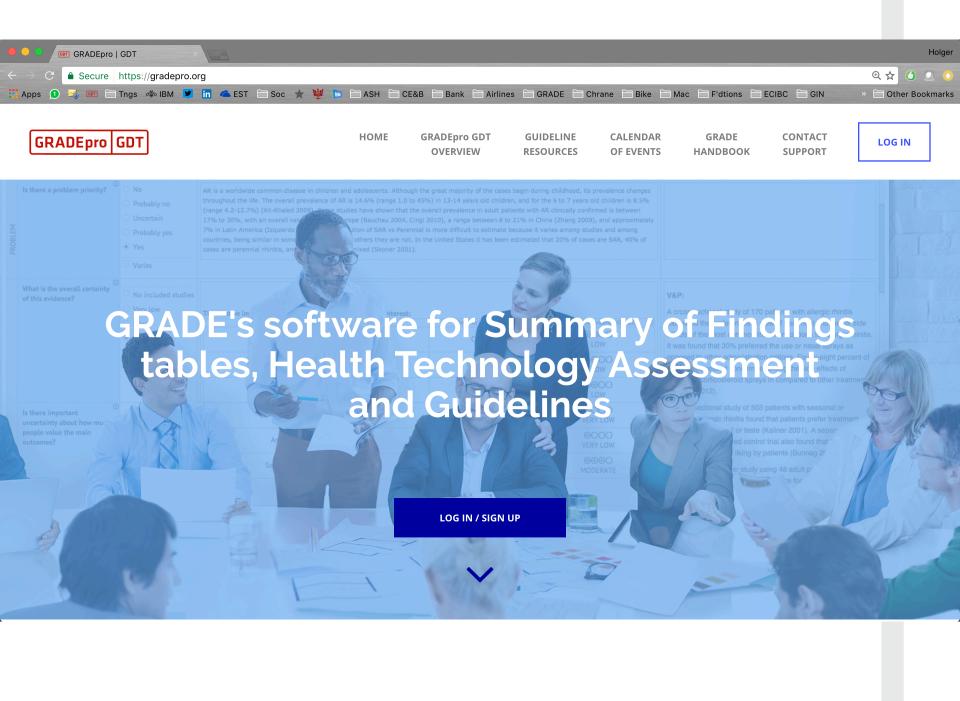
What are the effects of wearing hip protectors for older adults living in institutional settings?

Soft hip protector

Hard hip protector

What is the impact of wearing hip protectors for older adults (living in institutional settings)?

Outcomes:


• • •

Introduction to GRADEpro

Creating a project

Inserting your question

Importing

A systematic review of the literature on the treatment of pityriasis rubra pilaris type 1 with TNF-antagonists

G. Petrof,* N. Almaani, C.B. Archer

St John's Institute of Dermatology, *Correspondence: G. Petrof. E-

How confident are you in the estimates of effect?

About here?

← 100% confident

Abstract

Background Adult pityrias and histological parallels with pso-tumour necrosis factor (TNF) antagonists.

Objectives Our objective was to systematically review the interature for eviden the treatment of adult PRP.

Methods We performed a systematic search of the Cochrane library, EMBASE We defined diagnosis of PRP, classified clinical response and whether th antagonists. We also reviewed disease, treatment duration and follow up.

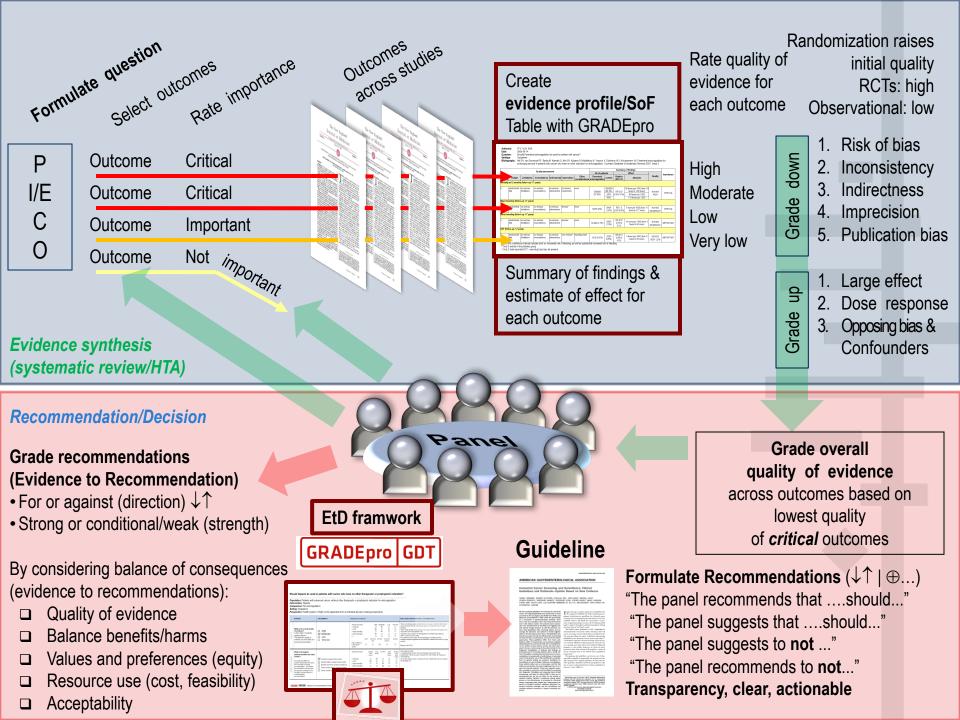
Results Sixteen articles were selected for detailed review. From these, 12 art criteria and were included in the systematic review. The authors identified archive. A total of 15 evaluable cases were included for analysis. Twelve show About here?

TNF-antagonists with a mean time to maximal response of 5 months. In 10 of the attributable to TNF antagonist therapy.

← 0% confident

Conclusion These data indicate that TNF-antagonists may be of value in treating adult type 1 PRP refractory to other systemic agents but selective reporting bias, together with the lack of standard diagnostic criteria and established spontaneous resolution in PRP, prevent any firm recommendations on their place in management.

Received: 10 November 2011; Accepted: 13 January 2012



Certainty of evidence

- Involves assessing evidence transparently
- Confidence in an estimate of effect, association?
- Starts with single studies
- Ends with a body of evidence by outcome and a recommendation

Recommendations

- Involves making judgments and decisions transparent, rating evidence
- Evidence to Decision (EtD) frameworks
- Comprehensive list of criteria that influence a recommendation
- Clearly developed & formulated action message
 - (strong or conditional/weak recommendations for or against an option)

Assessing the certainty (quality) of evidence

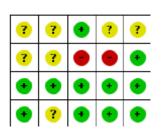
Drawing conclusions about the certainty of the evidence?

Are the studies well done? Risk of bias

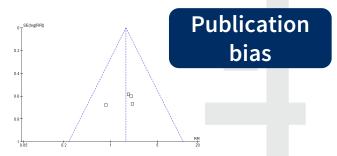
Are the results consistent across studies? Inconsistency

How directly relate the results to my question? Indirectness

Is this effect size precise? Imprecision


Are these all of the studies? Publication bias

Plus additional factors for observational studies


Dose response, size of effect, confounding

When interpreting results, consider...

Risk of bias

Methods	Randomized clinical trial
Participants	1150 patients with metastatic or locally advanced lung, breast, gastrointestinal (stomach, colon-rectum, pancreas), ovarian or head and neck cancer undergoing chemotherapy.
Interventions	Subcutaneous low molecular weight heparin (nadroparin calcium, one injection/day) vs. placebo for the overall duration of chemotherapy or up to a maximum of 4 months
Outcomes	Survival, (4 months and 12 months follow-up) Response to chamberage (4 months follow-up) For patients with central venous catheters (CVC), complications of possible thromototic origin, such as malfunction or requirement of CVC removal (4 months follow-up) Superficial thromotophilebilis of lower limbs (4 months follow-up) Asymptomatic thromotoembolic events disponsed during tests performed for other purposes of months follow-up) Safety (major bleeding, minor bleeding, other adverse events) (4 months follow-up)

Indirectness

	Caffeinated	coffee	Decaffeinated	coffee		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
Amore-Coffea 2000	2	31	10	34	6.6%	0.22 [0.05, 0.92]		
Deliciozza 2004	10	40	9	40	21.9%	1.11 [0.51, 2.44]	-	
Mama-Kaffa 1999	12	53	9	61	22.2%	1.53 [0.70, 3.35]	+-	
Morrocona 1998	3	15	1	17	2.9%	3.40 [0.39, 29.31]		
Norscafe 1998	19	68	9	64	26.4%	1.99 [0.97, 4.07]		
Oohlahlazza 1998	4	35	2	37	5.1%	2.11 [0.41, 10.83]	- •	
Piazza-Allerta 2003	8	35	6	37	14.9%	1.41 [0.54, 3.65]	-	
Total (95% CI)		277		290	100.0%	1.38 [0.96, 2.00]	•	mprecision
Total events	58		46				"	librecision
Heterogeneity: Chi ² =	8.58, df = 6 (P	= 0.20);1	²= 30%			+	2 04 1 10	 50
Test for overall effect:	Z = 1.73 (P = 0)	.08)					2 0.1 1 10 5	30
							Taroaro accar	

Inconsistency

Effect size and direction

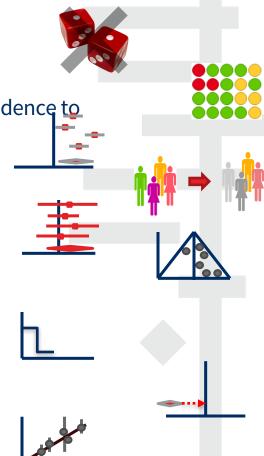
GRADE criteria	Rating (circle one)	Footnotes (explain reasons for downgrading)	Quality of the evidence (Circle one)
Outcome:			
Risk of Bias	No		
(use the Risk of Bias tables and figures)	serious (-1) very serious (-2)		
Inconsistency	No serious (-1) very serious (-2)		⊕⊕⊕⊕ High
Indirectness	No serious (-1) very serious (-2)		⊕⊕⊕O Moderate
Imprecision	No serious (-1) very serious (-2)		⊕⊕OO Low
Publication Bias	Undetected Strongly suspected (-1)		⊕○○○ Very Low
Other (upgrading factors, circle all that apply)	Large effect (+1 or +2) Dose response (+1 or +2) No Plausible confounding (+1 or +2)		75., 25.,

1. Design and Execution/Risk of Bias

Limitation in observational studies	Explanations
Failure to develop and apply appropriate eligibility criteria (inclusion of control population)	 under- or over-matching in case- control studies selection of exposed and unexposed in cohort studies from different populations
Flawed measurement of both exposure and outcome	 differences in measurement of exposure (e.g. recall bias in case-control studies) differential surveillance for outcome in exposed and unexposed in cohort studies
Failure to adequately control confounding	 failure of accurate measurement of all known prognostic factors failure to match for prognostic factors and/or adjustment in statistical analysis
Incomplete or inadequately short follow-up	

Domain	Outcome 1 (e.g. mortality)	Outcome 2 (e.g. VTE)	Outcome 3 (e.g. bleeding)	
Bias due to confounding	Low risk	Low risk	Low risk	Pre inte
Bias in selection of participants into the study	Low risk	Low risk	Low risk	or at ervention
Bias in classification of interventions	Moderate risk	Moderate risk	Moderate risk	ion
Bias due to deviations from intended interventions	Low risk	Low risk	Low risk	Post in
Bias due to missing data	Low risk	Serious risk	Serious risk	ter
Bias in measurement of outcomes	Low risk	Moderate risk	Moderate risk	interventior
Bias in selection of reported results	Low risk	Low risk	Low risk]
Overall bias	Low risk	Moderate risk	Moderate risk	

Determinants of certainty in a body of evidence: GRADE


A body of evidence starts as: high | ⊕⊕⊕⊕

5 factors that can lower quality

- Risk of bias criteria
 - Lack of randomization (observational studies) lowers confidence to low
- 2. Inconsistency (or heterogeneity)
- 3. Indirectness (PICO and applicability)
- 4. Imprecision
- 5. Publication bias

3 factors can increase quality

- 1. large magnitude of effect
- 2. opposing plausible residual bias or confounding
- 3. dose-response gradient

Suggested approach

1. Until more experience with ROBINS-I and its use in GRADE is available, those assessing RoB in NRS use a default approach of downgrading evidence from high-certainty to low-certainty due to risk of bias (i.e., as part of risk of bias domain in GRADE) as a result of lack of randomization.

Suggested approach

- 2. Not downgrading from high to low-certainty, that is by two levels, requires transparent and detailed justification. This should be done for the items of the ROBINS-I tool
- note to avoid confusion that ROBINS-I calls the seven items in the GRADE RoB domain, domains themselves.
- E.g. residual bias and confounding applies

1. RCTs Design and Execution/Risk of Bias

Limitations in RCTs

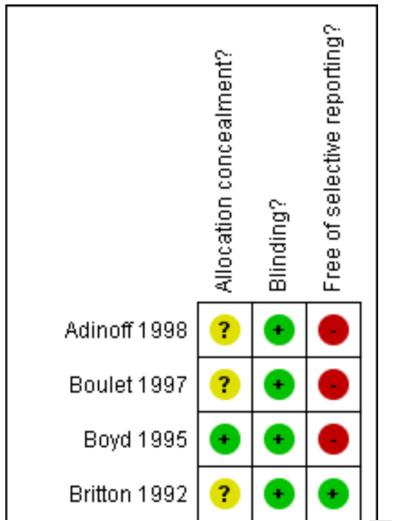
lack of concealment

intention to treat principle violated

inadequate blinding

loss to follow-up

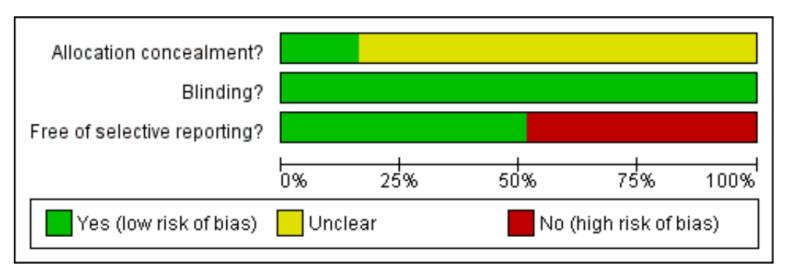
early stopping for benefit


selective outcome reporting

Design and Execution/RoB

Regular treatment with salmeterol for chronic asthma: serious adverse events (Review)

Cates CJ, Cates MJ


Figure 4. Risk of bias summary: review authors' judgments about each risk of bias item for each included study.

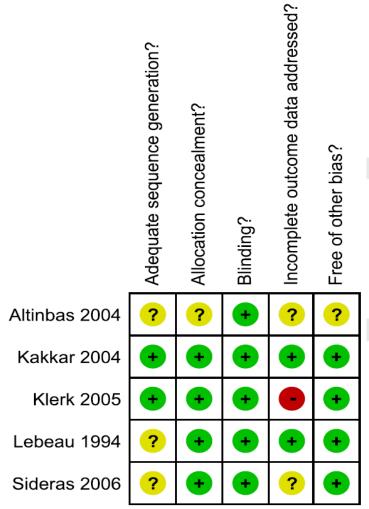
From Cates . CDSR 2008

Design and Execution/RoB

Figure 3. Risk of bias graph: review authors' judgments about each risk of bias item presented as percentages across all included studies.

Overall judgment required

Who believes the risk of bias is of concern?


Yes

No

Don't know or undecided

Detailed study design and execution

Mortality, cancer and anticoagulation

Five trials

Analysis 01.01. Comparison 01 Heparin vs placebo, Outcome 01 Mortality over duration of study

Review: Parenteral anticoagulation for prolonging survival in patients with cancer who have no other indication for anticoagulation

Comparison: 01 Heparin vs placebo

Outcome: 01 Mortality over duration of study

Study	Heparin N	Control N	log [Hazard Ratio] (SE)	Hazard Ratio (Random) 95% CI	Weight (%)	Hazard Ratio (Random) 95% Cl
01 SCLC						
Altinbas 2004	42	42	-0.65 (0.23)		10.8	0.52 [0.33, 0.82]
Lebeau 1994	138	139	-0.33 (0.12)	-	23.7	0.72 [0.56, 0.91]
Subtotal (95% CI)				•	34.5	0.65 [0.49, 0.87]
Test for heterogeneity	chi-square=1.48	df=1 p=0.22 l2 =	=324%			
Test for overall effect	z=2.93 p=0.003	}				
02 Advanced cancer						
Kakkar 2004	190	184	-0.24 (0.11)	-	25.9	0.79 [0.63, 0.98]
Klerk 2005	148	154	-0.28 (0.11)	-	25.5	0.75 [0.60, 0.94]
Sideras 2006	68	69	0.14 (0.19)	-	14.1	1.15 [0.79, 1.68]
Subtotal (95% CI)				•	65.5	0.84 [0.68, 1.03]
Test for heterogeneity	chi-square=3.81	df=2 p=0.15 l ² =	=47.5%			
Test for overall effect :	z=1.68 p=0.09					
Total (95% CI)				•	100.0	0.77 [0.65, 0.91]
Test for heterogeneity	chi-square=7.63	df=4 p=0.11 l ² =	=47.5%			
Test for overall effect	z=3.01 p=0.003	}				

Favours heparin

Favours control

				Hazard Ratio	Hazard Ratio	Risk of Bias
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEF
1.1.1 SCLC						
Altinbas 2004	-0.6531	0.2321	10.8%	0.52 [0.33, 0.82]		● ? ● ? ● •
Lebeau 1994	-0.334	0.1222	23.7%	0.72 [0.56, 0.91]		? • • • •
Subtotal (95% CI)			34.5%	0.65 [0.49, 0.87]	•	
Heterogeneity: Tau ² :	= 0.02; Chi² = 1.48, df	= 1 (P =	0.22); l ² =	: 32%		
Test for overall effect	: Z= 2.93 (P = 0.003)					
1.1.2 Advanced can	cer					
Kakkar 2004	-0.2395	0.1103	25.9%	0.79 [0.63, 0.98]	-	$\bullet \bullet \bullet \bullet \bullet \bullet$
Klerk 2005	-0.2838	0.1123	25.5%	0.75 [0.60, 0.94]		
Sideras 2006	0.1406	0.1927	14.1%	1.15 [0.79, 1.68]		? • • ? • •
Subtotal (95% CI)			65.5%	0.84 [0.68, 1.03]	•	
Heterogeneity: Tau² :	= 0.02; Chi² = 3.81, df	= 2 (P =	0.15); l² =	: 47%		
Test for overall effect	: Z= 1.68 (P = 0.09)					
Total (95% CI)			100.0%	0.77 [0.65, 0.91]	•	
Heterogeneity: Tau ² :	= 0.02; Chi² = 7.63, df	= 4 (P =	0.11); l ² =	: 48%		
Test for overall effect	: Z = 3.01 (P = 0.003)	·			0.2 0.5 1 2 Favours heparin Favours cont	orol .
Toot for outparoup dif	foroncoo: Chiz = 1 00	df = 1.70	0 - 0.46\	13 - 40 704	ravours nepann Favours com	101

Test for subgroup differences: $Chi^2 = 1.99$, df = 1 (P = 0.16), $I^2 = 49.7\%$ Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding (performance bias and detection bias)
- (D) Incomplete outcome data (attrition bias)
- (E) Selective reporting (reporting bias)
- (F) Other bias

Is the risk of bias...

The majority of studies had allocation concealment, and used blinded outcome and adjudication. We did not downgrade although there was some concern about lack of blinding in some studies; the overall risk of bias was felt to be very low.

...that my confidence in the result is reduced?

What if...

Not possible to blind?

Couldn't pool results?

Abstracts or little information about risk of bias?

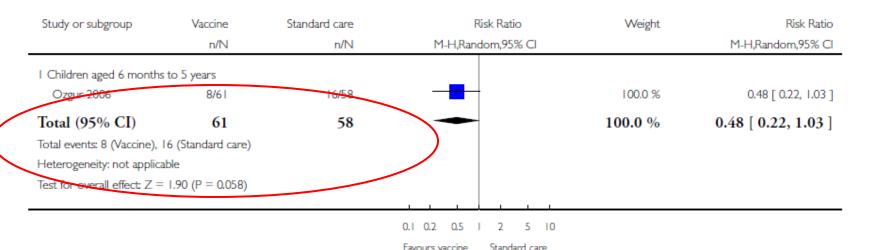
2. Imprecision

Small sample size

small number of events

Wide confidence intervals

uncertainty about magnitude of effect


Example: Immunization in children

Analysis 4.3. Comparison 4 Inactivated vaccines - (cohort studies by age group), Outcome 3 Otitis media.

Review: Vaccines for preventing influenza in healthy children

Comparison: 4 Inactivated vaccines - (cohort studies by age group)

Outcome: 3 Otitis media

Citation: Jefferson T, Rivetti A, Harnden A, Di Pietrantonj C, Demicheli V. Vaccines for preventing influenza in healthy children. Cochrane Database of Systematic Reviews 2008, Issue 2. Art. No.: CD004879. DOI: 10.1002/14651858.CD004879.pub3.

Is the imprecision...

...that is confidence/certainty in the result is reduced?

Analysis 6.1. Comparison 6 Inactivated vaccine versus placebo (RCTs), Outcome I Influenza.

Review: Vaccines for preventing influenza in healthy children

Comparison: 6 Inactivated vaccine versus placebo (RCTs)

Outcome: I Influenza

Study or subgroup	Vaccine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Random,95% CI		M-H,Random,95% CI
I Inactivated vaccines (one do	se)				
Beutner 1979a	28/300	82/275	•	41.8 %	0.31 [0.21, 0.47]
Clover 1991	9/54	36/82	-	16.6 %	0.38 [0.20, 0.72]
Gruber 1990	10/54	37/77	-	18.7 %	0.39 [0.21, 0.71]
Hoberman 2003a	15/273	22/138	-	17.7 %	0.34 [0.18, 0.64]
Hoberman 2003b	9/252	4/123	+	5.2 %	1.10 [0.35, 3.50]
Subtotal (95% CI)	933	695	•	100.0 %	0.36 [0.28, 0.48]
Total events: 71 (Vaccine), 181		_			
Heterogeneity: Tau ² = 0.00; C	$hi^2 = 4.13$, $df = 4$ (F	o = 0.39); I ² =3%			
Test for overall effect: $Z = 7.47$	2 (P < 0.00001)				
2 Inactivated vaccines (two do	oses)				
			0001 001 01 1 10 100 1000		

0.001 0.01 0.1 1 10 100 1000
Favours treatment Favours control

Is the imprecision...

...that is confidence/certainty in the result is reduced?

Imprecision

Consider

Sample sizes and number of events

assess according to effect size, control event rates,
 Optimal information size (OIS)

Width of confidence intervals

- Wide confidence intervals indicate uncertainty about the effect
- Includes null effect and appreciable benefit or harm (rule of thumb: RR<0.75 or >1.25)

Optimal information size (OIS)

if the total number of patients included in a systematic review is **less than** the number of patients generated by a conventional sample size calculation for a single adequately powered trial, consider rating down for imprecision

http://www.stat.ubc.ca/~rollin/stats/ssize/

Optimal information size implications: Consider the <u>total number of events</u>

Reasonable threshold for rating down for imprecision = 300 events

Total Number of Events	Relative Risk Reduction	Implications for meeting OIS threshold
100 or less	<u><</u> 30%	Will almost never meet threshold whatever control event rate
200	30%	Will meet threshold for control event rates for \sim 25% or greater
200	25%	Will meet threshold for control event rates for ~ 50% or greater
200	20%	Will meet threshold only for control event rates for ~ 80% or greater
300	<u>></u> 30%	Will meet threshold
300	25%	Will meet threshold for control event rates $\sim 25\%$ or greater
300	20%	Will meet threshold for control event rates ~ 60% or greater
400 or more	<u>></u> 25%	Will meet threshold for any control event rate
400 or more	20%	Will meet threshold for control event rates of \sim 40% or greater

Rules of thumb

Dichotomous outcomes

300 events

Continuous outcomes

400 people providing outcome measures

3. Inconsistency of results (Heterogeneity)

if inconsistency, look for explanation

• patients, intervention, comparator, outcome

if unexplained inconsistency lower quality

Reminders for immunization uptake

Analysis 2.1. Comparison 2 letter reminders vs. control, Outcome I Immunized.

Review: Patient reminder and recall systems to improve immunization rates

Comparison: 2 letter reminders vs. control

Outcome: I Immunized

Study or subgroup	Letter reminders	Control	Odds Ratio
- 2 Preschool-child	n/N	n/N	M-H.Random.95% CI
Campbell 1994T87	54/87	59/105	+-
Lieu 1997T69	82/153	47/136	-
Lieu I 998T82	72/162	78/219	-
Oeffinger1992T27	33/116	31/122	
Young 1980T63	51/106	34/105	
Subtotal (95% CI)	624	687	•

Odds Ratio
M-H.Random.95% CI
1.28 [0.71, 2.28]
2.19 [1.36, 3.52]
1.45 [0.95, 2.19]
1.17 [0.66, 2.07]
1.94 [1.11, 3.39]

1.58 [1.26, 1.99]

Total events: 292 (Letter reminders), 249 (Control)

Heterogeneity: Tau² = 0.00; Chi² = 4.08, df = 4 (P = 0.40); I² = 2%

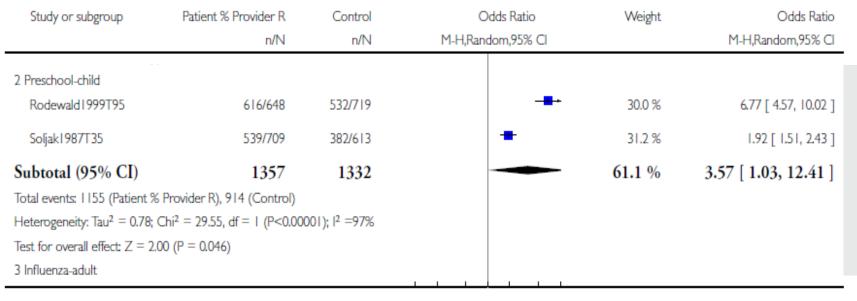
Test for overall effect: Z = 3.92 (P = 0.000088)

Citation: Jacobson Vann JC, Szilagyi P. Patient reminder and recall systems to improve immunization rates. *Cochrane Database of Systematic Reviews* 2005, Issue 3. Art. No.: CD003941. DOI: 10.1002/14651858.CD003941.pub2.

Would you downgrade for inconsistency?

No, there is no serious inconsistency

Yes, there is serious inconsistency


Yes, there is very serious inconsistency

Analysis 6.1. Comparison 6 patient & provider reminder vs. control, Outcome 1 Immunized.

Review: Patient reminder and recall systems to improve immunization rates

Comparison: 6 patient % provider reminder vs. control

Outcome: I Immunized

0.1 0.2 0.5 1 2 5 10
Favours Control Favours Reminders

Citation: Jacobson Vann JC, Szilagyi P. Patient reminder and recall systems to improve immunization rates. Cochrane Database of Systematic Reviews 2005, Issue 3. Art. No.: CD003941. DOI: 10.1002/14651858.CD003941.pub2.

Would you downgrade for inconsistency?

No, there is no serious inconsistency

Yes, there is serious inconsistency

Yes, there is very serious inconsistency

Non-steroidal drug use and risk of pancreatic cancer

	ASAMSAI	Ds use	No/occasio	nal use		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Anderson	10	6012	60	17277	12.4%	0.48 [0.24, 0.93]	
Menezes	17	79	108	327	13.4%	0.56 [0.31, 1.00]	
Ratnasinghe	43	14838	35	7996	14.8%	0.66 [0.42, 1.03]	
Jacobs	37	7769	3455	721041	16.1%	0.99 [0.72, 1.38]	
Coogan	18	188	207	2339	14.2%	1.09 [0.66, 1.81]	- -
Schernhammer	37	10292	153	89541	15.7%	2.11 [1.47, 3.02]	
Langman	25	48	413	1286	13.4%	2.30 [1.29, 4.10]	
Total (95% CI)		39226		839807	100.0%	1.01 [0.65, 1.55]	
Total events	187		4431				
Heterogeneity: Tau² = Test for overall effect:			lf=6 (P < 0.0	0001); l²=	83%		0.1 0.2 0.5 1 2 5 10 Protective factor Risk factor

Would you downgrade for inconsistency?

No, there is no serious inconsistency

Yes, there is serious inconsistency

Yes, there is very serious inconsistency

Inconsistency

1²

P-value

Overlap in CI

Difference in point estimates

4. Directness of Evidence generalizability, transferability, applicability

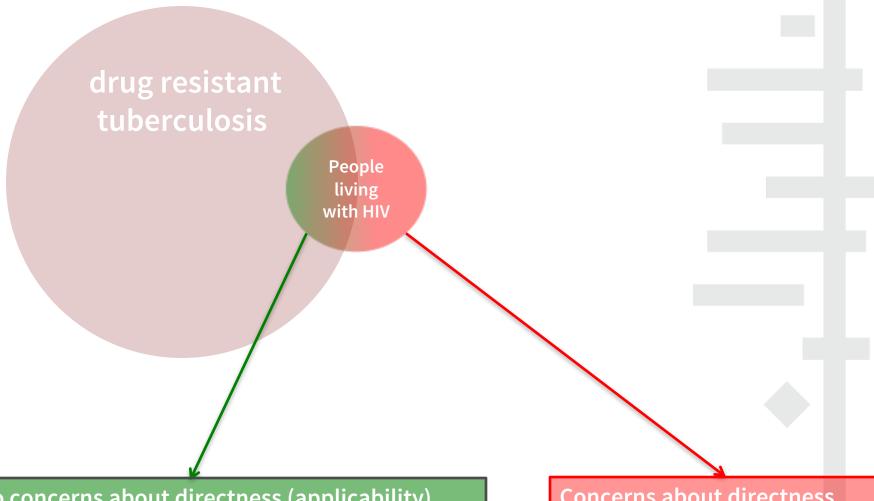
differences in

- populations/patients (HIC L/MIC)
- interventions (new anticoagulants warfarin)
- comparator appropriate (newer antibx old)
- outcomes (important surrogate; signs and symptoms mortality)

indirect comparisons

- interested in A versus B
- have A versus C and B versus C

Indirect evidence from RCTs


A versus C C versus B

OR 0.70 (95% CI 0.23 to 2.11 OR 1.32 (95%CI 0.37 to 4.79)

OR 0.93 (95% CI, 0.17 to 5.03)

A versus B

Indirectness - population

No concerns about directness (applicability)
No downgrading
Same recommendation

Concerns about directness

Downgrade

✓

Separate recommendation

Indirectness – different effects?

drug resistant tuberculosis People living with HIV

People living with HIV

No concerns about directness (applicability)
No downgrading
Same recommendation

Concerns about directness
Downgrade

✓
Separate recommendation

Example: When is evidence indirect for population?

A systematic review asks

'what are the effects of self management programmes in people with asthma?'

Consider these separate scenarios for 'quality of life'...

- 1. 5/6 studies include people with severe asthma
- 2.
- 3.

Do the results apply directly to people with mild asthma?

Example: When is evidence indirect for population?

A systematic review asks

'what are the effects of self management programmes in people with asthma?'

Consider these separate scenarios for 'quality of life'...

- 1
- 2. 4/6 studies are in children ages 1-15
- 3.

Do the results apply directly adults?

Example: When is evidence indirect for population?

A systematic review asks

'what are the effects of self management programmes in people with COPD (chronic obstructive pulmonary disease)?'

Consider these separate scenarios for 'quality of life'...

- 1
- 2.
- 3. All studies are in men

Do the results apply directly to women as well?

Surrogate outcomes

Examples of surrogate outcomes

Symptomatic pulmonary PE versus severe PE

2 or 3 months smear for TB – cure

Cholesterol – cardiovascular disease

Bone mineral density - Risk of fracture

Calcium phosphate levels – coronary artery disease

HIV viral load – morbidity

Tumour size – survival

Reduction in air pollution – morbidity or respiratory disease

Making judgments when faced with surrogate outcomes

Is there a strong association between the surrogate and the patient important outcome?

Can you present the patient important outcomes instead of the surrogates?

Note: it is still important to indicate when there is no data for patient important outcomes