Statistical methods for updating metaanalyses

Mark Simmonds

Centre for Reviews and Dissemination University of York, UK

With:

Julian Elliott, Joanne McKenzie, Georgia Salanti, Adriani Nikolakopoulou, Julian Higgins

THE UNIVERSITY of York
Centre for Reviews and Dissemination

Problems with standard updating

- Type I error
 - Inappropriate significance
 - Rises with more updates
 - Small sample sizes
 - Poor estimation of parameters (heterogeneity)
 - Later update might reverse findings
- Type II error
 - No effect, or just not significant?
 - When is it safe to conclude no meaningful effect?

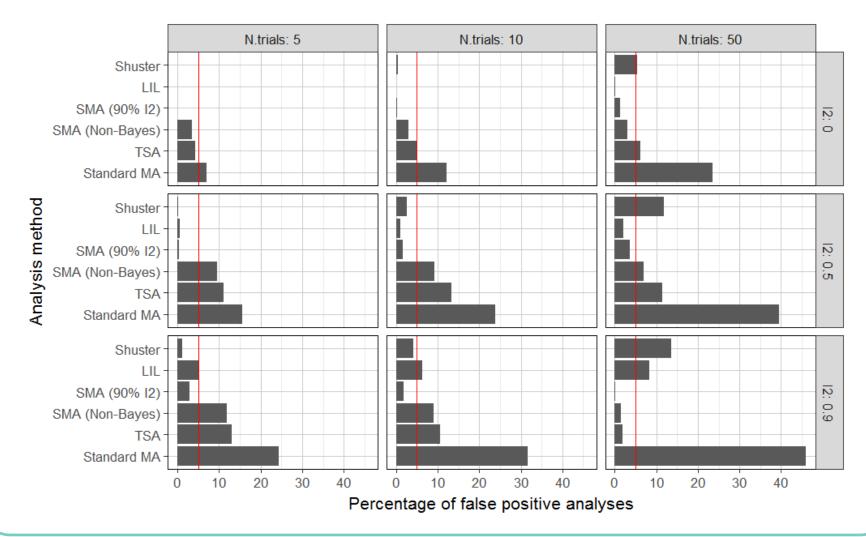
Controlling error

- Control Type I and Type II error
 - Sequential Meta-Analysis (SMA, Higgins et al)
 - With or without "Approximate Bayesian" heterogeneity
 - Trial Sequential Analysis (TSA, Copenhagen)

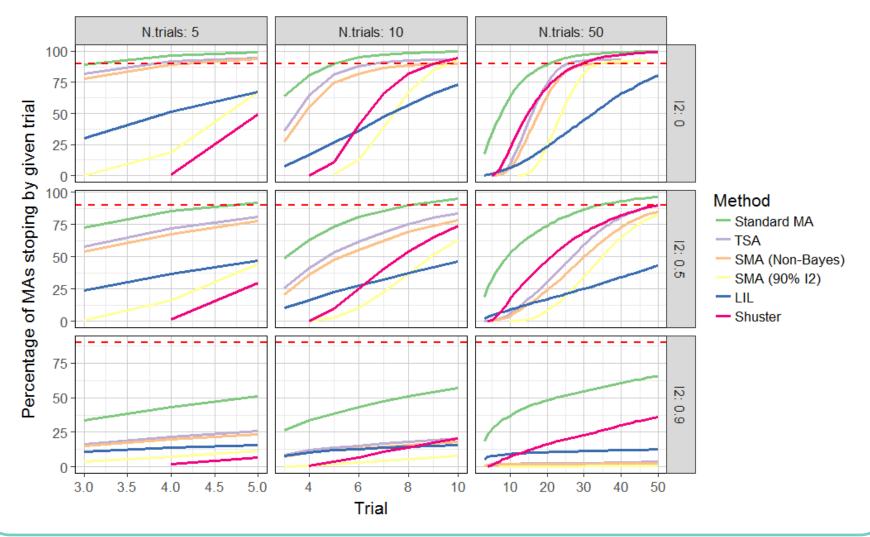
- Control Type I error
 - Law of Iterated Logarithm (LIL, Hu et al)
 - "Shuster-Pocock" method (Shuster)

Simulation study

Simulated meta-analyses varying:


True treatment effect: 0 or 0.1

Number of studies: 5 to 50


Heterogeneity: I² 0 to 90%

- Fixed total sample size of 9000
 - -90% power to detect effect of 0.1 if $I^2 = 50\%$

False positive rates – Type I error

Cumulative power – Type II error

Conventional updated meta-analysis

- Too many inappropriate positive conclusions
 - Elevated Type I error rate
 - But not vastly elevated for most real updated reviews?

 Many analyses showing significant results are based on too little evidence

TSA and SMA

- Both control Type I error well
 - Except with few trials / high heterogeneity
- "Approximate Bayes" heterogeneity not required in most circumstances?
- Control for Type II error
 - But most Cochrane reviews are underpowered
- No obvious choice of one over the other

LIL and Shuster methods

- Control for Type I error
- But too conservative
 - LIL lacks statistical power
 - Shuster lacks power with few trials
- No control of Type II error
- Can't be recommended at present?