Making results of patient-reported outcomes interpretable

Gordon Guyatt, MD, MSc Donald L. Patrick, PhD, MSPH

<u>Plan</u>

- what are patient-reported outcomes?
- the problem of interpretability
- strategies for making results interpretable
 - effect sizes
 - minimal important differences
- systematic reviews and meta-analyses
 options for summarizing effects

<u>What is a Patient-Reported</u> <u>Outcome (PRO)?</u>

- **PRO:** Any report directly from patients, without interpretation by physicians or anyone else, about how they function or feel in relation to a health condition and its therapy (from diaries, questionnaires, interviews, etc.)
- PROs developed with patient input using qualitative methods a guiding principle
- PRO term requires concept purported to be measured be specified
- PRO #QoL#HrQoL

The Number of RCTs Including an Evaluation from the Patient's Perspective

- Some treatment effects known only to the patient, i.e. pain, symptoms, feelings
- Small changes in survival further informed by symptoms, function, and feelings
- Survival not only outcome of interest for many interventions
- Physiologic measures often do reflect how patient functions or feels
- Well-developed assessment by patients is as reliable if not more reliable than ratings of patient's condition by clinicians

- mean score for treatment group improves 5 points on the PRO measure, no change in control
- is this trivial, large, or somewhere between?
- statistically significant does that help?

<u>Br J Dermatology, 2004</u>

- effect of alefacept on quality of life in 553 patients with psoriasis
- alefacept significantly reduced (improved) mean Dermatology Quality of Life Scale scores compared with placebo: 4.4 vs. 1.8 at 2 weeks after the last dose (P<0.0001) and 3.4 vs. 1.4 at 12 weeks after the last dose (P<0.001).
- effect size?

- trivial, small but important, large?

Minimally important difference

- smallest change that patients would consider important
- global ratings of change
 are you the same, a little better, a lot better
- instruments on 1 to 7 scale 0.5 often represents MID

Randomized trial of lung volume reduction surgery

- severe emphysema over inflated
- reducing lung volume may improve mechanical properties
- RCT of 55 pts followed for 1 year
- key QOL CRQ
 dyspnea, fatigue, emotional function

Effect of Surgery and Medical Control Treatment

Would you recommend surgery to your patients on the basis of these results?

<u>What if effect smaller</u>

- randomized trial respiratory rehabilitation in COPD
- effect on emotional function 0.4
- important? how important?

CRQ Emotion Change Scores

Number Needed to Treat

- Number needed to treat (NNT) for 1 person to achieve a specified change in a PRO (responder criteria)
- *NNT = 100/(pT pC)*
- pT is the percentage of patients who improved in the treatment group, and
- pC is the proportion of patients who improved in the control group

<u>Differences between rehabilitation</u> and conventional care in CAL

CRQ domain	Differenc gro	e between pups	Estimated proportion better on	Estimated proportion better on	Proportion benefiting from	No NNT for a single patient to	
	Mean P value rehabilit		rehabilitation	conventional care	rehabilitation	benefit	
Dyspnoea	0.60	0.0003	0.47	0.28	0.19	5.2	
Fatigue	0.45	0.06	0.45	0.23	0.23	4.4	
Emotional function	0.40	0.001	0.47	0.17	0.30	3.3	

<u>Systematic review</u> respiratory rehabilitation

CRQ	Point estimate (95% Confidence Interval)
Dyspnea	1.06 (0.85, 1.26)
Emotional Function	0.76 (0.52, 1.00)
Fatigue	0.92 (0.71, 1.13)
Mastery	0.97 (0.74, 1.20)
Overall	0.94 (0.57, 1.32)

Would you recommend respiratory rehabilitation to your patients?

Systematic review

- CRQ overall pooled
 mean difference 0.7, CI 0.2 to 1.2
- St. George's MID 4
 mean difference 6, CI 2 to 8
- what is your conclusion on size/importance of effect?

Solution for RCT interpretation

- Rankin Stroke Scale
- five levels
 - no symptoms
 - minor handicap
 - restriction in life style, can look after self
 - moderate handicap
 - restrict life style, prevent independent existence
 - moderately severe handicap
 - clearly prevent independence, no constant attention

- severe handicap, require constant attention

<u>Systematic review of RCTs of</u> <u>thrombolysis in acute stroke</u>

- use Rankin threshold 2 to 3
 - 2 minor handicap
 - 3 moderate handicap
 - proportion "dead or disabled"
- "death or dependency"
 - 55.2% in thrombolysis, 68.3% in control
 - 42% odds reduction
 - 13.1% absolute risk reduction
 - NNT 7 to 8

Flavanoids for Hemorrhoids

- venotonic agents
 - mechanism unclear, increase venous return
- popularity
 - 90 venotonics commercialized in France
 - none in Sweden and Norway
 - France 70% of world market
- possibilities
 - French misguided, rest of world missing out
- key outcome
 - risk not improving/persistent symptoms
 - 11 studies, 1002 patients, 375 events

Phlebotonics for Hemorrhoids (Venotonics vs. Placebo) Relative Risk (95%CI)

0.1

1

- Chauvenet 0.41 (0.26, 0.65)
 - Cospite 0.11 (0.03, 0.36)
- Thanapongsathorn 0.65 (0.36, 1.17)
 - Annoni 0.20 (0.05, 0.80)
 - Clyne 0.37 (0.17, 0.81)
 - Pirard 0.31 (0.14, 0.57)
- Thanapongsathorn 0.33 (0.04, 2.91)
 - Thorp 1.30 (0.68, 2.48)
 - Titapan 0.41 (0.20, 0.85)
 - Wijayanegara 0.55 (0.42, 0.72)

Godeberg 0.17 (0.08, 0.37)

Pooled Estimate (95%CI) 0.40 (0.29, 0.57)

0.01

<u>Systematic reviews, meta-analysis</u>

- seldom have original data from individual studies to apply thresholds
- individual studies my use different PROs to measure same concepts

<u>Steroids for laparoscopic</u> <u>Cholecystectomy</u>

- systematic review
- nausea and vomiting
 16 RCTs
- pain
 5 RCTs

Study	Dexamethasone	Control	RR (random)	Weight	RR (random)
or sub-category	nN	n/N	95% CI	%	95% CI
01 Dexamethasone 2 mg					
Elhakim 2mg	15/30	15/30	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	8.29	1.00 [0.60, 1.66]
Subtotal (95% CI)	30	30		8.29	1.00 [0.60, 1.66]
Total events: 15 (Dexamethas	one), 15 (Control)				
Test for heterogeneity: not app	olicable				
Test for overall effect: Z = 0.0	0 (P = 1.00)				
02 Dexamethasone 4-5 mg					
Cekmen	9/15	14/15		9.53	0.64 [0.42. 0.99]
Coloma	25/70	33/70		10.18	0.76 [0.51, 1.13]
Flhakim 4mg	11/30	15/30	100 C	7 02	0 73 (0 4) 1 321
Wang 2002 (English)	10/38	14/39	<u> </u>	5 95	0 73 [0 37] 44]
Subtotal (95% CI)	153	154	<u> </u>	32 69	0 71 10 56 0 911
Total events: 55 (Devamethas)	one) 76 (Control)	101	· · · · ·	02.05	0.11 (0.00, 0.01)
Test for heterogeneity: $Chi^2 = 1$ Test for overall effect: $Z = 2.7$	0.35, df = 3 (P = 0.95), l ² = 0% 1 (P = 0.007)				
03 Dexamethasone 8-10 mg					
Adducci (Met)	15/37	24/38		9.08	0.64 [0.41, 1.02]
Adducci (Ond)	9/35	9/34	a the second	4.80	0.97 [0.44, 2.15]
Bisgaard	13/40	21/40		7.83	0.62 [0.36, 1.06]
Biswas	3/60	11/60		2.43	0.27 [0.08, 0.93]
Elhakim 8mg	6/30	15/30		4.75	0.40 [0.18, 0.89]
Feo	7/49	24/52		5.24	0.31 [0.15, 0.65]
Fuili	1/60	10/60	4	0.98	0.10 (0.01 0.76)
Nesek-Adam (Met)	5/40	18/40	<u></u>	4 08	0 28 (0 1) 0 681
Nesek-Adam (None)	9/40	24/40		6.53	0 38 [0 20 0 70]
Ozdamar	3/25	4/25	<u> </u>	1 95	0 75 (0 19 3 011
Wang 1999	9/40	24/38		6 59	0 36 10 19 0 671
Subtotal (95% CI)	456	457	-	54 27	0 46 10 35 0 601
Total events: 80 (Dexamethas)	one) 184 (Control)				0.10 (0.00) 0.00)
Test for heterogeneity: Chi ² = Test for overall effect: Z = 5.6	13.93, df = 10 (P = 0.18), l ² = 26 6 (P < 0.00001)	3.2%			
04 Dexamethasone 16 mg					
Elhakim 16mg	6/30	15/30		4.75	0.40 [0.18, 0.89]
Subtotal (95% Cl)	30	30		4.75	0.40 [0.18, 0.89]
Total events: 6 (Dexamethaso	ne), 15 (Control)				
Test for heterogeneity: not app	olicable				
Test for overall effect: Z = 2.2	4 (P = 0.02)				
Total (95% Cl)	669	671	•	100.00	0.56 [0.45, 0.69]
Total events: 156 (Dexametha:	sone), 290 (Control)				
Test for heterogeneity: $Chi^2 = 3$ Test for overall effect: $Z = 5.5$	26.24, df = 16 (P = 0.05), l² = 39 2 (P < 0.00001)	9.0%			
			0.1 0.2 0.5 1 2	5 10	
		Fa	vors Dexamethasone Favors Cont	rol	

Pain - no dichotomies, multiple measures - what to do?

	Pooled estimate and 95% CI					
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis				
Category 1: Methods derived from standard deviation units						
i) SMD	SMD=0.73 (95% CI 0.49 to 0.96)	SMD=-0.79(95%Cl -0.17 to -1.41)				
ii) Conversion of SMD to dichotomies (to OR) (Suissa)	¹ OR=3.22 (95% Cl 2.24 to 4.74)	² OR=0.21 (95% CI 0.04 to 0.76)				
iii) Conversion of SMD to OR (Hasselbad/Hedges)	OR=3.74 (95% CI 2.42 to 5.68)	OR=0.23 (95% CI 0.08 to 0.74)				
iv) Conversion of SMD to dichotomies (to NNT) (Suissa)	¹ NNT=3.6 (95% CI 2.7 to 5.4)	² NNT=6.7 (95% CI 5.3 to 22.7)				

Category 2: Not derived from SMD, not relying on MID

i) Conversion of all instruments to the most popular	³ MD=0.76 (95% Cl 0.64 to 0.88)	⁴ MD=4 (95%Cl 3.2 to 4.7)
iv) Ratio of means (ROM)	⁵ Not applicable	ROM=0.87 (95% CI 0.78 to 0.98)

Category 3: Not derived from SMD, depends on knowledge of MID

i) Minimally important difference (MID) units	⁶ MD=1.75 (95% Cl 1.37 to 2.13)	⁷ Not applicable	
ii) Conversion of MDs to dichotomies (to OR)	OR=3.52 (95% Cl 2.60 to 4.76)	⁷ Not applicable	
iii) Conversion of MDs to dichotomies (to NNT)	NNT=4.3 (95% CI 3.34 to 6.0)	⁷ Not applicable	

- divide each effect by standard deviation
- ultimate result in SD units
- between "effect size" or SMD
- within standardized response mean

SI MARIANA MARIANA MARIANA

	Pooled estimate and 95% Cl				
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis			
Category 1: Methods derived from standard deviation units					
i) SMD	SMD=0.73 (95% CI 0.49 to 0.96)	SMD=-0.79(95%Cl -0.17 to -1.41)			

Cohen: small effect 0.2 SD units moderate effect 0.5 large effect 0.8

more recent suggestions in terms of MID across all instruments 0.5 or 0.35

Making SD units interpretable

- convert back to natural units of most popular measure
- pooled effect 0.5 SD units
 - pooled SD of on 100 point scale 20
 - effect in natural units 10
- vulnerability
 - effect size distortion by heterogeneity
 - SD of studies using most popular varies

Avoiding heterogeneity problem

- convert all measures to units of most popular
 - most popular 0 100
 - alternative 0 to 7
- multiply all scores by 100/7
 - get weighted mean difference
 - alternative to standardized mean difference
- result in natural units

	Pooled estimate and 95% CI						
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis					
Category 2: Not derived from SMD, not relying on MID							
i) Conversion of all instruments to the most popular	³ MD=0.76 (95% CI 0.64 to 0.88)	⁴ MD=4 (95%Cl 3.2 to 4.7)					

- vulnerable to differences in instrument properties
 - assumes clinicians understand natural units (MID)
 - vulnerable to interpretation problem

	Illustrative C (95	omparative Risks 5% CI)	Polativo		Quality of	Comments	
Outcomes	Assumed risk with Placebo	Corresponding risk with Dexamethasone	Effect (95% CI)	Number of participants (studies)	the Evidence ¹ (GRADE0		
-				- 			
Post-operative pain (B) Measured on a scale from 0, no pain, to 100, worst pain imaginable. ⁴	The mean post- operative pain scores with placebo ranged from 43 to 54	The mean pain score in the intervention groups was on average 15 (3 to 27) lower		539 (5 studies)	Low ^{2,3}	Scores estimated based on an SMD of 0.79 $(95\% \text{ CI} -1.41 \text{ to} - 0.17)^4$	

1- Quality rated from 1 (very low quality) to 4 (high quality), 2- Evidence limited by heterogeneity between studies, 3- Evidence limited by imprecise data (small sample size or event rate), 4- A standard deviation of 0.5 represents a moderate difference between groups,

<u>MID units</u>

- Cochrane review of respiratory rehabilitation for COPD
- using 16 trials, we compared the existing method with the MID method
- trials employed two widely used diseasespecific HRQL instruments
 - Chronic Respiratory Disease Questionnaire (CRQ)
 - St. Georges Respiratory Questionnaire (SGRQ)

Results

CRQ	Mean Difference (95% CI)
Dyspnea	1.06 (0.85, 1.26)
Emotional Function	0.76 (0.52, 1.00)
Fatigue	0.92 (0.71, 1.13)
Mastery	0.97 (0.74, 1.20)
Overall	0.94 (0.57, 1.32)
SGRQ	
Activities	4 78 (1 72 7 83)
	6 27 (2 47 10 08)
Symptoms	4.68 (0.25, 9.61)
Overall	6.11 (3.24, 8.98)

Results - SD Units

	Experimental		Control			Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.1.1 SGRQ									
Boxall 2005	5.8	11.8	23	1.4	13.3	24	6.8%	0.34 [-0.23, 0.92]	+
Chlumsky 2001	4.07	19.76	13	4.22	19.2	6	3.9%	-0.01 [-0.97, 0.96]	
Engstrom 1999	-0.3	17.3	26	-0.5	16.2	24	7.0%	0.01 [-0.54, 0.57]	_
Finnerty 2001	9.3	12.2	24	2.2	15	25	6.9%	0.51 [-0.06, 1.08]	
Ringbaek 2000	2.1	19	17	2.2	17	19	6.1%	-0.01 [-0.66, 0.65]	<u> </u>
2.1.2 CRQ									
Behnke 2000	1.9	0.7	15	-0.07	1.1	15	4.2%	2.08 [1.17, 2.99]	
Cambach 2004	1.04	0.91	15	0.01	0.75	8	4.1%	1.15 [0.22, 2.09]	—
Goldstein 2004	0.43	0.92	40	-0.13	0.75	40	8.1%	0.66 [0.21, 1.11]	— —
Gosselink 2000	0.67	1.02	34	-0.1	1.11	28	7.4%	0.72 [0.20, 1.23]	
Griffiths 2000	0.97	1	93	-0.15	0.9	91	9.6%	1.17 [0.86, 1.49]	
Guell 1995	0.98	1.01	29	-0.18	1.05	27	6.9%	1.11 [0.55, 1.68]	I
Guell 1998	0.45	0.89	18	-0.3	0.97	17	5.8%	0.79 [0.10, 1.48]	
Hernandez 2000	0.86	1	20	0.14	1.03	17	6.0%	0.69 [0.03, 1.36]	⊢ •──
Simpson 1992	0.86	1.26	14	0.13	1.11	14	5.2%	0.60 [-0.16, 1.36]	+
Singh 2003	0.91	0.75	20	0.1	0.68	20	6.0%	1.11 [0.44, 1.78]	·
Wijkstra 1994	0.8	0.83	28	0.07	0.82	15	6.1%	0.87 [0.21, 1.52]	
Total (95% Cl)			429			390	100.0%	0.73 [0.49, 0.96]	•
Heterogeneity: Tau ² =	0.13 [.] CI	hi² = 35	82 df:	= 15 (P =	= 0.000)): I Z = £	58%		
Test for overall effect: $7 = 6.04$ (P < 0.00001) -2 -1 0 1 2									
Favours experimental Favours control									

<u>Results - MID Units</u>

			Experimental	Control		MID	MID
Study or Subgroup	MID	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.3.1 SGRQ							
Boxall 2005	1.1	0.926	23	23	3.7%	1.10 [-0.71, 2.91]	
Chlumsky 2001	-0.0375	2.391	13	6	0.6%	-0.04 [-4.72, 4.65]	
Engstrom 1999	0.05	1.184	26	24	2.4%	0.05 [-2.27, 2.37]	
Finnerty 2001	1.775	0.974	24	25	3.4%	1.77 [-0.13, 3.68]	+
Ringbaek 2000	-0.025	1.509	17	17	1.5%	-0.03 [-2.98, 2.93]	
1.3.2 CRQ							
Behnke 2000	3.96	0.683	15	15	5.9%	3.96 [2.62, 5.30]	
Cambach 2004	2.06	0.713	15	8	5.5%	2.06 [0.66, 3.46]	—
Goldstein 2004	1.12	0.445	40	40	10.1%	1.12 [0.25, 1.99]	-
Gosselink 2000	1.545	0.545	34	28	8.0%	1.54 [0.48, 2.61]	—
Griffiths 2000	2.25	0.281	93	91	14.9%	2.25 [1.70, 2.80]	
Guell 1995	2.3	0.553	29	27	7.9%	2.30 [1.22, 3.38]	_
Guell 1998	1.5	0.63	18	17	6.6%	1.50 [0.27, 2.73]	— -
Hernandez 2000	1.445	0.674	20	17	6.0%	1.45 [0.12, 2.77]	
Simpson 1992	1.465	0.73	14	14	5.3%	1.47 [0.03, 2.90]	
Singh 2003	1.63	0.452	20	20	10.0%	1.63 [0.74, 2.52]	— • —
Wijkstra 1994	1.45	0.537	28	15	8.2%	1.45 [0.40, 2.50]	
Total (95% CI)			429	387	100.0%	1.75 [1.37, 2.13]	•
Heterogeneity: Tau ² =	: 0.17: Chi	² = 22.1	5. df = 15 (P = 0	.10): F = 3	2%		
Test for overall effect	Z = 9.00 (P < 0.00	001)			-	-4 -2 0 2 4
	(,			F (avours experimental Favours control

MID Units

- suggests a large effect:
 - the pooled estimate twice the smallest difference patients perceive as important
- MID approach
 - prevents introducing inconsistency depending on the SD
 - intuitive interpretation
 - vulnerable to all-or-nothing misinterpretation

- assume MID is 0.50 and patients mean improvement is 0.25
- does this mean no one benefits?
- what if 0.6 everyone benefits?
- if 0.25 mean change could mean:
 - 75% have 0 improvement
 - 25% have 1.0
 - NNT of 4

No dichotomies in primary studies

Assume standard symmetrical distribution Assume equal variance in intervention and control groups

Approaches to dichotomizing

- Suissa: output risk in control and intervention group
- assumes normal distribution
 - but not equal variance
 - requires specification of control group risk
- specify control group risk and generate intervention group risk
- from event rates generate odds ratio

Approaches to dichotomizing

- Hasselbad and Hedges
- assume logistic distribution
 - doesn't require control event risk
 - assumes normality, equal variance
- Cox and Snell
- Kraemer ROC, AUC
- all can generate OR, RD, NNT
- all vulnerable to heterogeneity, normality

Furukawa Suissa approach to generate NNTs

Control group response rate	10	20	30	40	50	60	70	80	90
ES = 0.2	25	17	14	13	13	13	15	20	33
ES = 0.5	9	6	5	5	5	5	7	9	16
ES = 0.8	5	4	3	3	4	4	5	7	12
ES = 1.0	4	3	3	3	3	4	4	6	11

	Pooled estimate and 95% CI			
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis		
Category 1: Methods derived from standard deviation units				
i) SMD	SMD=0.73 (95% Cl 0.49 to 0.96)	SMD=-0.79(95%Cl -0.17 to -1.41)		
ii) Conversion of SMD to dichotomies (to OR) (Suissa)	¹ OR=3.22 (95% CI 2.24 to 4.74)	² OR=0.21 (95% CI 0.04 to 0.76)		
iii) Conversion of SMD to OR (Hasselbad/Hedges)	OR=3.74 (95% Cl 2.42 to 5.68)	OR=0.23 (95% Cl 0.08 to 0.74)		
iv) Conversion of SMD to dichotomies (to NNT) (Suissa)	¹ NNT=3.6 (95% Cl 2.7 to 5.4)	² NNT=6.7 (95% Cl 5.3 to 22.7)		

Ratio of Means (RoM)

 Requires estimate of variance of this ratio this can be estimated using the delta method:

•
$$Var_{ln(RoM)} = \frac{var_{exp}}{(mean_{exp}^2)} + \frac{var_{control}}{(mean_{control}^2)}$$

<u>Avoiding heterogeneity problem:</u> <u>Ratio of means</u>

- analogous to relative risk
 - greater absolute difference with greater control risk
- requires natural zero
- cannot use if results reported as change

	Pooled estimate and 95% Cl		
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis	
Category 2: Not derived from SMD, not relying on MID			
i) Conversion of all instruments to the most popular	³ MD=0.76 (95% CI 0.64 to 0.88)	⁴ MD=4 (95%Cl 3.2 to 4.7)	
iv) Ratio of means (ROM)	⁵ Not applicable	ROM=0.87 (95% CI 0.78 to 0.98)	

Avoiding heterogeneity problem

- back to MID
- effect in MID units
- dichotomy risk difference

No dichotomies in primary studies

	Pooled estimate and 95% CI				
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis			
Category 3: Not derived from SMD, depends on knowledge of MID					
i) Minimally important difference (MID) units	⁶ MD=1.75 (95% CI 1.37 to	⁷ Not applicable			
	2.13)				
ii) Conversion of MDs to dichotomies (to OR)	OR=3.52 (95% Cl 2.60 to 4.76)	⁷ Not applicable			
iii) Conversion of MDs to dichotomies (to NNT)	NNT=4.3 (95% Cl 3.34 to 6.0)	⁷ Not applicable			

	Pooled estimate and 95% CI			
Methods of reporting	COPD meta-analysis	Dexamethasone meta-analysis		
Category 1: Methods derived from standard deviation units				
i) SMD	SMD=0.73 (95% CI 0.49 to 0.96)	SMD=-0.79(95%Cl -0.17 to -1.41)		
ii) Conversion of SMD to dichotomies (to OR) (Suissa)	¹ OR=3.22 (95% CI 2.24 to 4.74)	² OR=0.21 (95% CI 0.04 to 0.76)		
iii) Conversion of SMD to OR (Hasselbad/Hedges)	OR=3.74 (95% Cl 2.42 to 5.68)	OR=0.23 (95% Cl 0.08 to 0.74)		
iv) Conversion of SMD to dichotomies (to NNT) (Suissa)	¹ NNT=3.6 (95% Cl 2.7 to 5.4)	² NNT=6.7 (95% CI 5.3 to 22.7)		

Category 2: Not derived from SMD, not relying on MID

i) Conversion of all instruments to the most popular	³ MD=0.76 (95% Cl 0.64 to 0.88)	⁴ MD=4 (95%Cl 3.2 to 4.7)
iv) Ratio of means (ROM)	⁵ Not applicable	ROM=0.87 (95% CI 0.78 to 0.98)

Category 3: Not derived from SMD, depends on knowledge of MID

i) Minimally important difference (MID) units	⁶ MD=1.75 (95% Cl 1.37 to 2.13)	⁷ Not applicable	
ii) Conversion of MDs to dichotomies (to OR)	OR=3.52 (95% Cl 2.60 to 4.76)	⁷ Not applicable	
iii) Conversion of MDs to dichotomies (to NNT)	NNT=4.3 (95% CI 3.34 to 6.0)	⁷ Not applicable	

<u>Conclusions re interpretability</u>

- if possible use natural dichotomies
- many approaches rely on SD units
 suffer from problem of heterogeneity
 important limitation
- approaches not relying on SD units preferable
 - ideally know MID
 - can present in MID units and proportions
 - approaches complementary