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Overview

e Bayesian pairwise meta-analysis
e Extension to multiple treatments
— Consistency assumptions
* Measures of model fit and model comparison
* Inconsistency models
— How many inconsistencies?
— how direct and indirect evidence combine
— graphical/statistical outputs (p-values)

* Further reading and possible extensions

Model

 Likelihood: will depend on type of outcome

— Normal for log-OR, log-RR, Risk-diff, mean, mean change
from baseline, mean-diff, log-HR

— Binomial for no. events/total

— Poisson for no. events given person years at risk
e Scale for model: will depend on likelihood

— Normal likelihood, pooled effect on natural scale

— Binomial likelihood, pooled effect on logit scale (logistic
regression)

— Poisson likelihood, pooled effect on log scale (log-linear
model)
e Arm-based summaries will estimate a baseline

effect plus a relative effect
— E.g. log-odds=baseline + relative effect

Computation

* Using Markov Chain Monte Carlo
e Straightforward in WinBUGS 1.4.3

* Some Statistical knowledge recommended
— Probably true for all Meta-analyses anyway!




BAYESIAN PAIRWISE META-
ANALYSIS

Generic Fixed Effect Model
Y ~ Normal(,u,Vl.)

Y. is the observed effect in study i with variance V,

All studies assumed to be estimating the same
underlying effect size u

— Statistical Homogeneity

For a Bayesian analysis, a prior distribution must
be specified for u, for example on In(OR) scale,

L~ Normal(O,lOs)

Appendix 1: Choice of Prior for u

Often amount of information in studies would
overwhelm any reasonable prior - therefore choice not
critical

A priori we would be 95% certain that true value of u is
between (0-1.96x316 and 0+1.96x 316)*

On an odds ratio scale that is equivalent to
(10259 to 10%69)

i.e. very vague and essentially flat over the realistic
range of interest

Could, of course, include informative priors...

*Note: 316 =/1¢°

Generic Random Effects Model
Y ~ Normal(é’l.,Vl.)
Y. is the observed effect in study i with variance V,
Across studies 8, ~ Normal (,u, 2'2)
prior distribution for u, as before
U~ Normal(O,lOS)

Prior distribution for t: Uniform(0,10) or half-
normal

— Requires care when evidence sparse (Lambert et al, SiM
2005)




Some Advantages of Bayesian MA

* Can cope with zero cells

* Incorporates uncertainty in the heterogeneity
parameter

* Easily extended to incorporate covariates
* Predictive distributions straightforward

e Can include informative prior distributions for eg
heterogeneity parameter, when evidence sparse
* Normality of true effects in a random-effects
analysis
— Can be easily relaxed in WinBUGS to eg t-distribution

MULTIPLE TREATMENT META-
ANALYSIS

(MIXED TREATMENT COMPARISONS, NETWORK META-ANALYSIS)

Assumptions

* Appropriate modelling of data (as before)
— Likelihood and link function
e Comparability of studies

— exchangeability in all aspects other than particular
treatment comparison being made

e Equal heterogeneity (RE variance) in each
comparison
— not strictly necessary (Lu and Ades, Biostatistics 2009)

Bayesian Multiple Treatment
Meta-analysis

1. Four treatments A, B,C, D

2. Take treatment A as the reference treatment

— makes no difference to relative effects, but aids
interpretation if eg. placebo is chosen

3. Then the treatment effects (eg. log odds ratios)
of B, C, D relative to A are the basic parameters

4. Given them priors:
Ha Hac Hap™ N(0,10°)




Functional parameters in MTC

The remaining contrasts are functional parameters

Hpc = Upc—HUnpg
HMgp = Hap~™HMag ~ CONSISTENCY assumption
Hep = Hap—Hac

A B C D All comparisons relative to A

* Any information on functional parameters tells us
indirectly about basic parameters

— There is a degree of redundancy in the network
e Either FE or RE model satisfying these conditions
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Consistency

¢ We assume that the treatment effect
U estimated by BC trials,

would be the same as the treatment effect
estimated by the

AC and AB trials
if they had included B and C arms

e Assume that trial arms are missing at random

— reason they are missing is not related to treatment
effect
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Generic random effects Model

Y, ~ Normal (6.,V,)
0. ~ Normal (,ubk , 2'2)

Generic random effects Model
Y ~N0rmal(6’l.,Vl.)

b, ~ NOrmal(ﬂAk _/uAbﬂz-z)
\—Y—/

Consistency
assumptions

So trial of BvsC will have k=C and b=B

For a Bayesian analysis, prior distributions are required
for 72 and all basic parameters Uaj-

Models which do not assume common heterogeneity
are available (Lu and Ades Biostatistics, 2009)
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Example: Treatment for acute
myocardial infarction™®

8 thrombolytic drugs and surgery

9 treatments, 50 trials

Two very large 3-arm trials

16 direct comparisons (out of 36)

*see eg Dias et al SiM in press, for details

Thrombo: Treatment Network
ASPAC PTCA
(9) ™ SK + t-PA
r-PA “

" 1 TNK
2 e
1
Acc t-PA (3)

2

t-PA UK
@ ®)

Question:

* |n a network with 9 different treatments how
many basic parameters?

FE Model

i=1,..., 50 trials; k=1,2,3 arm number
Likelihood

v, ~ Binomial(r, ,n, )

Link function (scale)
logit(, ) =7, + (/Uuk —Hy, M
S
° priors ConS|Stency assumptlons
7, ~ Normal(0,10°) «—————
H;~ Normal(0,10%), j = 2,...,9 treatments




Thrombo: log-odds ratios (FE model)

Treat No of Pairwise MA MTC

X |y |studies A var AN var

1 ]2 8 -0.004 0.001 0.002 0.001
NE 1 -0.159 0002| -0.178 0.002
e 1 0060  0008| -0.124 0.004
1|7 8 0.665| (0034 -0476| (0.010]
1|8 1 0.369 | \0.26 -0.202 0.049)
1 ]9 4 -0.006 0,002 0.016| 0001
2 |7 3 0543| (0174} -0.478| [o0.011
2 |8 3 0204 \0120/ 0205 \0.049/
2 |9 3 0.017 0.002 0.014 0.001
3 |4 1 0.113 0.003 0.128 0.003
3 |5 2 0.019 0.004 0.054 0.003
3 |7 11 -0.215 0014 | -0.298 0.010
3 |8 2 0.144 0127| -0.025 0.049
3 |9 2 (1407)  o0a73| (0194)  0.003

RE Model

i=1,..., 50 trials; k=1,2,3 arm number

Likelihood 7, ~Binomial(z,,n,)

Link function
logit(z, )=n,+0,1,,

RE distribution ¢~ NO”mal(ﬂuk _ﬂltlsfz)
* priors Consistency assumptions
1, ~ Normal(0,10°)

#; ~ Normal(0,10°), j = 2,...,9 treatments

7 ~ Unif(0,10)

FE or RE model?

Is heterogeneity always present?

For a well defined population and decision
problem, there may be little heterogeneity
— Or this may be explained by covariates

— Is this ever the case in “lumped” Cochrane

Reviews?

Outputs from RE model harder to interpret

Problems with estimation of variance of RE
distribution when data sparse

FE model preferable if it can be justified...

FE or RE model?

* Choose between two models

* To assess model fit calculate residual deviance
— Compare to number of unconstrained data points

e For model comparison use DIC

— Penalises a better fit by the effective number of
parameters, pD




Residual Deviance

* The best fit we can get is where the model
predictions equal the observed data
— Saturated model

* Residual deviance is the deviance for the current
model, minus the deviance for a saturated model

Dres = —2(10ghkmoa’el — logliksat)

* Calculated at each iteration of MCMC algorithm
e Summarised by posterior mean D,,,
 If the model is an adequate fit, we expect D, _to be

res

roughly equal to the number of unconstrained data
points

Appendix 2: Calculating D,

At each iteration, the residual deviance, D,_,, is
calculated as the sum of the deviances for each
data point, eg for Binomial

v, n.—r.
D, =Z2(n10g(7’}+(n,-—7’,»)10g£nf_ D
= Zdevl.

7; = observed no. events

O

7, = p,n, = expected no. events from current model
dev, is the deviance residual

Summarised by the posterior mean Bres
(over M iterations)

Model Comparison

e Deviance Information Criteria (DIC)

— Take deviance for current model (= -2xloglik for current
model)

— Penalise by effective no of parameters

DIC:Bmodel+pD

— Extension of Akaike’s Information Criterion

— Trade-off between fit and complexity

— Differences of 5 (?3) are important

— Can also use posterior mean of residual deviance

res

(differs only by a constant — does not matter for comparisons)

Spiegelhalter et al JRSS B,2002

Effective No. Parameters, p,

Fixed Effects Model
* pp = no. parameters

Random Effects Model
« p, depends on between study variance, 72

« For 72 close to 0, 6, = u; 1 parameter (as in fixed
effects model)

« For very large 72, 6, = 6;; one parameter for each
study




Appendix 3: Calculating p,

e At each iteration, calculate

= Z dev,

* For each data point, posterior mean of dev, = D,

(mean taken over M iterations)

* Calculate posterior mean of fitted values, eg
in Binomi&l is the posterior mean of

* Calculate deviance at the posterior mean of
the fitted values D,

(replace 7, with 7. in formula for residual deviance)
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Appendix 3 (cont): Calculating p,

e The effective number of parameters p,, is
calculated as

the sum, over all data points, of the leverages,
i.e. the sum of the posterior mean of the
residual deviances, minus the deviances at the
posterior mean of the fitted values

pD = Zlevemgei = Z[ﬁi — 151]

i
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How many parameters in this
example?

Fixed effects model (72 =0)
n. , 50 studies

58 parameters
A

4, , fixed treatment effects for 8 basic parameters

Random effects model (72 >0)

. pp=61.6
1. , 50 studies 7
0, (k #1) , from common distribution
Independent effects model (2 — o) Up to 102 parameters

7, , 50 studies

0, (k #1), no shrinkage in treatment effects for 52 arms
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Fixed v Random Effects Models

Residual Deviance* Heterogeneity
(posterior mean) (posterior median)
Random

Effects

Fixed
Effects

102.7 164.3 0.079
106.0 57.7 163.7
*Compare to 102 data points
* RE model appears to fit best

e but no advantage given more parameters...
e ... unless believe heterogeneity...
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Diagnostic Plots

* Plot:

— individual data points’ contributions to the DIC
(with sign given by difference between fitted and observed values)

— against leverages

(i.e. individual data points’ contributions to pD)

* Highlight poorly fitting or highly influential
data points:

— Add parabolas of the form x2+y=c
— These represent contributions of ¢ to the DIC

— Points outside parabola with ¢=3, say, are
highlighted

Spiegelhalter et al JRSS B,2002
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Checking for

INCONSISTENCY




What about inconsistency?

The true treatment effects must be consistent

But there may be inconsistencies in the
EVIDENCE

How to check for this?

Question:

* How many “inconsistencies” could there be ?

Treatments A,B,C.
Trials or sets of trials AB, AC, BC
A
B C

How many inconsistencies?

Inconsistencies are properties of loops

Inconsistency degrees of freedom (ICDF) is the
maximum number of possible inconsistencies*

Informally described as the number of independent
3-way loops in the evidence structure

In this example the ICDF is seven

— Count independent 3-way loops

— Discount any loops formed only by 3-arm trials
¢ One such loop (1,3,4), in this example.

Multiple testing?

* Lu and Ades, JASA 2006

Thrombo: Treatment Network

ASPAC PTCA
©) ™ SK + t-PA
4)

TNK
(6)

SK
)

Acc t-PA (3)

t-PA UK
@ ®)




Inconsistency & heterogeneity

* “heterogeneity” in treatment effects is the variation in
treatment effects between trials

WITHIN pair-wise contrasts, eg within AB trials
* “inconsistency” is variation in treatment effects

BETWEEN pair-wise contrasts, eg AB, AC results
inconsistent with BC.

Both due to ‘missing’ covariates: factors that interact
with the treatment effect but vary between trials

To measure heterogeneity, must look at trials.

To measure inconsistency, can focus on the pooled
summaries of evidence on pair-wise contrasts...
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Inconsistency & heterogeneity

* We can have inconsistency when no
heterogeneity is present (i.e. in a FE model)
e But will a RE model disguise true
inconsistencies?
— Possibly, depends on the evidence network
— Not the case in the Thrombolytics example
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Inconsistency - Heterogeneity

best intervention NN ERYEEE RSN RO IS

2 interventions Meta-analysis of RCTs

e Recall

— heterogeneity relates to variability of distribution
of random treatment effects

— Inconsistency relates to validity of consistency
assumptions, ie across comparisons

Main ideas for checking consistency

1. Compare posterior distributions obtained
from direct and indirect evidence for each
comparison

2. Model fit/comparison problem

— Fit models with and without consistency
assumptions

— Compare model fit (residual deviance, DIC)
3. A mixture of both
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Comparison of direct and indirect estimates

* Method for triangles (Bucher JCE, 1997)
— Separate Pairwise meta-analyses on all contrasts
— Calculate indirect estimate (using consistency

equations)

— Ignores network

* Evaluation of concordance within closed loops
— previous session

* Can be extended to whole networks
— Dias et al. Statistics in Medicine (in press, 2010)

— Problems when three-arm trials included or when
random effects models used.

Model comparison

* In a complex treatment network, what is direct

evidence for one comparison is indirect for
another...

e ...and there are multiple ways in which to form

an ‘indirect’ comparison

e Better to think as model criticism

Is my consistency model reasonably
supported by the evidence?
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Inconsistency models*

. 5
Consistency model Hygs sy My gseeo~ N(0,107)
9 treatments, _

. Hoz = Hizs— Ky,

8 basic parameters

Hgo = Hig = Hig
Inconsistency model - _

Hy7 =H H, +@
Add 7 parameters 7 b7 b b
(8+7=15 parameters) Hyg = Hig =M, T @ 54

Compare model fit

2 - _
o, ~N(0,0, ) HMao = Hig —His T D5

n(‘onsislency

WARNING: This model requires .

careful parameterisation * Lu and Ades, JASA 2006

Box plot of inconsistency factors w (RE model)

|

{1,3,9}

1.0 |-

0.0 |-

-1.0 |-
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Independent mean effects model

Consistency model o ys s My gseees g ~ N(0,10%)
9 treatments, oy =ty =ty
8 basic parameters

Hgo = Hig—Hg

Independent mean effects model
15 parameters (one for each pairwise contrast)

NOTE: Same number of parameters as inconsistency model!

Hiss HissHygseeos Hy g5 Hygs Hyg ™ N(O,IOS)

No consistency assumptions
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Leverage plot for RE MTC
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Node-splitting™ Leverage plot when node(3,9) split

* Splits on each contrast, u (node, eg. 2vs3) 3 b : ‘ .
— Studies which compare 2 and 3 directly inform direct estimate : .
— Rest of data with arms 2 and 3 removed inform indirect estimate 5]
* Relaxes consistency assumption for one contrast at a time S
e Compare model fit 2
— Check between-trial heterogeneity parameters > 3
— residual deviance, DIC statistics E °
* Draw plots of posterior distributions based on direct and ]
indirect evidence .
— Bayesian p-value to check for consistency
e Computationally intensive S
— Needs to be done for every node o
S

o3 * Marshall & Spiegelhalter, Bayesian Analysis (2007)

deviance residuals 54
Dias et al. Statistics in Medicine (in press, 2010)

Compare residual deviance for each data point Compare model fit (RE model)

3.0

. Between-trial
s REHIVE]

y . pD heterogeneity
+ deviance* . .
& (posterior median)
MTC 102.7 61.6 164.3 0.08
S + 4
g T Independent mean 974 678 165.2 011
g . R effects ' ' ) '
%" i 0.07
9 re Inconsistency )
g %’i 98.4 64.6 163.0 inconsistency
s o - 4544 (c0-factors) . -035
° @’# 44 Trials 44,45 variance = 0.
4 +
L .5 compare Node (3,9) split 96.9 58.7 155.6 0.05
& ﬁ + treatments 3
- : : : : ‘ and 9 * Compare to 102 data points

Deviance MTC 55 %6




Density
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Compare direct and indirect evidence

\ Full MTM

a-

indirect

Density

< direct

Full MTM

o~ o indirect
-~ -~
P ~
~
- ~ -~

log-odds ratio

T T
-0.5 0.0

T
0.5

log-odds ratio

1.0

Consistent Possibly inconsistent?

Density

Inconsistent!

w4k

indirect

. U
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Node (3,9) is split

Direct evidence on (3,9)
conflicts with indirect
evidence

Bayesian p-value < 0.005
MTM dominated by indirect

evidence from very large
trials

Only 2 small trials directly
compare treats 3 and 9

log-odds ratio

Question

* Would you trust the direct head-to-head trials
or the MTM results?

* Direct log-OR =1.407, variance = 0.173
— Based on two small trials

e MTM log-OR =0.194, variance = 0.003

— Based on ‘borrowing strength’ from evidence on
all other trials (some very large)

— And on the assumption of CONSISTENCY!

Why is there inconsistency?

* We have found evidence of inconsistency in node
(3,9) and evidence loop (1,3,9)
— The two direct trials comparing treat 3 vs 9 have less

absolute mortality in control arm than other studies using
treatment 3 as control...

— Other baseline characteristics did not reveal other causes
(same time period, no apparent difference in clinical
factors)
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Considerations on Inconsistency
ALL these methods can ONLY detect inconsistency
in a general sense.

They cannot say which evidence is “wrong”.

Inconsistency is a property of evidence “loops”, not
of particular edges.

Identifying which edge, or edges, are “wrong” is a
task for clinical epidemiology, not statistics.

Need to question if reasonable to combine trials in
MTM a priori

When no evidence of inconsistency, we can be
reassured that the core MTM assumptions are met
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Extensions and

FURTHER READING

Bias adjustment

e Given a mechanism for bias
— e.g. lack of allocation concealment or blinding

e Estimate and adjust for bias within the network
— Using degree of redundancy afforded by consistency

assumption

* Requires a large network with multiple
combinations of “biased” and “unbiased”
evidence...

Dias S, Welton NJ, Marinho V, Salanti G, Higgins JPT and Ades AE.
Estimation and adjustment of bias in randomised evidence
using mixed treatment comparison meta-analysis. In press,
Journal of the Royal Statistical Society Series A.
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For further details on MTM, including courses
http://bristol.ac.uk/cobm/research/mpes
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