

Changes to RevMan in terms of random-effects methods

Areti-Angeliki Veroniki, PhD, MSc

St. Michael's Hospital, Unity Health Toronto

IHPME, University of Toronto

Trusted evidence. Informed decisions. Better health.

I have no actual or potential conflicts of interest in relation to this presentation

Acknowledgements

- Dean Langan
- Simon Turner
- Mark Simmonds*
- Anna Chaimani*
- Kerry Dwan
- Jo McKenzie*

* Denotes Convenors of the Cochrane Statistical Methods Group

Log odds ratio

Under the random-effects model, we can estimate a number of parameters and calculate several statistics, including:

- Average (summary) effect
 (μ̂), along with a CI
- Between-study variance $(\hat{\tau}^2)$, along with a CI
- **Prediction interval** (predicted range for the true treatment effect in an individual study)
- •+ others (e.g., *I*², *H*²)

() Cochrane

Intravenous immunoglobulin (iVIG) for Guillain – Barre syndrome (GBS)

Random-effects meta-analysis model

- DerSimonian & Laird (DL) is the frequently random-effects meta-analysis method used
- DL is a method of moments estimator of τ^2
- The Wald-type normal distribution is used to calculate a CI for the summary effect
- DL with the Wald-type normal distribution is the **only** random-effects method implemented in **RevMan**
- Different estimators of heterogeneity (τ^2) and methods to calculate uncertainty in the summary effect exist
- For any particular meta-analysis, the estimated parameters (e.g. summary effect, heterogeneity variance) may differ depending on the method used

Which is the most appropriate method to use?

Process used by the SMG to develop recommendations

Team members:

- Areti Angeliki Veroniki
- Dean Langan
- Simon Turner
- Mark Simmonds
- Anna Chaimani
- Kerry Dwan
- Joanne McKenzie

Experience

- Co-convenors of the Cochrane Statistical Methods Group
- Led systematic reviews of statistical simulation studies, and undertaken simulation studies, examining randomeffects methods
- Cochrane Methods Support Lead and Statistical Editor

Recommendations based on published studies

According to simulation and empirical findings, the main factors that may affect the between-study variance estimation are:

- Number and size of studies included in the meta-analysis
- Magnitude of true heterogeneity
- Distribution of true treatment effects
- Type of data (e.g., dichotomous, continuous)
- Choice of effect measure
- Frequency of events (for dichotomous outcomes)
- How well study-specific weights, variances and treatment effects are estimated

 we often assume these are known.

Recommendations based on published studies

An empirical study using 57,397 Cochrane meta-analyses with $k \ge 2$ showed that: \rightarrow The mean τ^2 is higher than generally assumed but fails to be detected, especially for small k! *Kontopantelis et al. 2013*

The majority of the pairwise meta-analyses have:	
k ≤ 10	<i>Turner et al 2012 Pullenayegum et al 2011 Rhodes et al 2014</i>

Problem for Cochrane reviews \rightarrow few studies

• e.g. Langan 2015 median 4 [IQR 3-7]

Summary of the properties of REML, PM and DL

			Num	ber of studies	
			Few (2 - 6)	Many (6+)	
			All estimators (REML, PM, DL)	REML recommended, though performance	
			negatively biased in meta-analyses	is broadly comparable with PM and DL. PM	
Continuous (mean difference		ean difference	with moderate to high	not recommended in meta-analyses with	
and standardised mean		ed mean	heterogeneity, particularly in meta-	large differences in study size. Otherwise,	
difference)			analyses with small studies. REML	all methods perform reasonably well,	
			and PM biased to a lesser extent,	particularly in meta-analyses with large	
			REML recommended.	studies.	
e Se		01 < n < 0.0	Performance of methods broadly comparable with continuous outcome meta-		
		0.1 < p < 0.9	analyses (see above).		
ne		n < 0 1	All have considerable negative bias	All estimators (REML, PM, DL) negatively	
103			except for meta-analyses with large	biased in meta-analyses with moderate to	
Out	Dichotomous (odds ratio, p < 0.1		studies (where REML is	high heterogeneity, particularly in meta-	
		h < 0.1	recommended with better	analyses with small studies. REML and PM	
	relative risk, risk		performance than DL).	often biased to a lesser extent, REML	
				recommended.	
	difference)		All estimators have substantial	All have substantial negative bias except for	
			negative bias (REML, PM and DL)	meta-analyses with many large studies	
		p < 0.01	in meta-analyses with small study	(where REML is recommended with better	
			sizes. REML recommended if any,	performance than DL)	
			but all methods poor.		

* p in this table refers to the average event probability across the studies in a meta-analysis

Heterogeneity variance estimators to be added to RevMan

📲 New Outcome Wizard		
New Outcome Wizard Which analysis method do you want to use?		
Statistical Method	Analysis Model	
○ <u>M</u> antel-Haenszel	<u>R</u> andom Effects	
Inverse Variance		
Effect Measure		
○ Peto Odds Ratio	○ Mea <u>n</u> Difference	
Odds Ratio	Std. Mean Difference Name of Effect Measure:	
Risk <u>D</u> ifference	Hazard Ratio	
<u>C</u> ancel < <u>B</u> ack	<u>N</u> ext> <u>Finish</u>	

SMG Recommendations

- 1. We recommend that **REML** as the default option
 - When REML cannot provide a unique estimate for heterogeneity variance (i.e., when a scoring algorithm, e.g., Fisher's scoring and Newton-Raphson, cannot solve the ML equations numerically), the DL method should be used as a closed form, non-iterative method
- Methods to calculate CIs for the heterogeneity variance should be available in RevMan - We recommend the

generalized Q-statistic method

Confidence Intervals (CIs) for summary effect

- There are >15 approaches to calculate a CI for the overall effect size under the random-effects model
 - Wald-type method (some refer to this method as DerSimonian and Laird) is the most popular CI approach
- Hartung-Knapp-Sidik-Jonkman method
 - Choice of τ² estimator becomes much less important
 - But, with 2 to 3 studies, CI can be very wide
 - In the absence of heterogeneity: HKSJ coverage < WTz coverage
 - Making inferences in the random-effects model with a *small* number of studies is **hard**!

Summary of the properties of Wald type (z-test), HKSJ, and modified HKSJ

		Number of studies		
		Small (2)	Small (3 – 4)	Moderate to Large (≥5)
erved heterogeneity	Yes	Both Wald type and HKSJ have poor coverage.	The modified HKSJ outperforms HKSJ and Wald type methods in terms of coverage.	HKSJ outperforms the Wald type method in terms of coverage. The modified HKSJ leads to overly conservative results compared with HKSJ.
Presence of obse	No	The Wald type method outperforms HKSJ with higher power (e.g., HKSJ: 15% vs Wald type: 60%).	The Wald Type outperforms HKSJ in terms of coverage.	The Wald Type outperforms HKSJ in terms of coverage.

* modified HKSJ with q*=max{q, 1}

Confidence Interval methods to be added to RevMan

💐 New Outcome Wizard		X	
New Outcome Wizard Which analysis method do you want to use?			
Statistical Method Analysis Model			
○ <u>P</u> eto	Eixed Effect		
○ <u>M</u> antel-Haenszel	<u>R</u> andom Effects	summary	
Inverse Variance		effect	
○ <u>E</u> xp[(O-E) / Var]			
Effect Measure			
○ Peto Odds Ratio	O Mea <u>n</u> Difference		
Odds R <u>a</u> tio	Odds Ratio Std. Mean Difference		
○ Risk Ratio	○ Risk Ratio ○ Name of Effect Measure:		
○ Risk <u>D</u> ifference	Hazard Ratio		
<u>C</u> ancel < <u>B</u> ack	<u>N</u> ext >	<u>F</u> inish	

SMG Recommendations

- 1. We recommend that **HKSJ** as the default option when:
 - the number of studies in the meta-analysis is >2, and
 - the estimated heterogeneity variance is >0
- 2. But, the Wald-type (z-test) in the absence of heterogeneity
- 3. For meta-analyses with 2 studies, we recommend the use of

both HKSJ and Wald-type (z-test) methods

Interpreting random effects meta-analysis

Random-effects meta-analysis suitable for unexplained heterogeneity

• Random effects may not explain all the heterogeneity of the data if covariates are responsible

Conventionally, inference is focused on the mean of the distribution $(\hat{\mu})$

- o i.e. we report mean and 95% CI (measure of precision) from a meta-analysis
- What about the dispersion of the effect size?

Can also calculate a prediction interval

$$\hat{\mu}_{RE} \pm z_{0.975} \sqrt{\hat{\tau}^2 + var(\hat{\mu}_{RE})}$$

 $\hat{\mu}_{RE} \pm t_{k-1,0.975} \sqrt{\hat{\tau}^2 + var(\hat{\mu}_{RE})}$

The interval within which we expect that the effect of a future study will lie

\circ 95% of the true effect estimates are predicted to fall within the aforementioned interval

Prediction Intervals (PIs)

95% PI:
$$\hat{\mu} \pm t_{k-1,0.975} \sqrt{\hat{\tau}^2 + \sigma_{w,\hat{\mu}}^2}$$

 $exp\left(-1.15 \pm 2.78 \sqrt{0.0175 + 0.19^2}\right)$
[0. 17, 0. 61] $\sigma_{w,\hat{\mu}}^2 = q \cdot var(\hat{\mu})$
 $q = \frac{Q_{gen}}{k-1}, \text{ and } Q_{gen} = \sum w_{i,RE}(y_i - \hat{\mu})^2$
Study 1 0.20 [0.10, 0.42]
Study 2 0.59 [0.13, 2.59]
Study 3 0.28 [0.12, 0.66]
Study 4 0.29 [0.09, 0.92]
Study 5 0.49 [0.23, 1.05]
RE Model [HKS] 95% CI] 0.32 [0. 19, 0. 54]
 $\hat{\mu} = -1.15$
 $\sigma_{w,\hat{\mu}} = 0.19$ 0.49 [0.23 [0. 19, 0. 54]
Odds Ratio (log scale)

SMG Recommendations

- Methods to calculate prediction intervals should be implemented
- 2. We recommend:
 - The t-distribution prediction interval when the HKSJ is used
 - The normal distribution prediction interval

when the **Wald-type normal distribution** is used

SMG Overall Recommendations

Next Steps

- There are still some decisions to be made
 - e.g. reporting two confidence intervals using different methods for meta-analyses with 2 studies
- We hope to make these features available during Q4-2023
 - During the transition period (~6 months) these changes will become optional for authors and mandatory after ~6 months
- After the transition period these changes will become mandatory for authors (except for the calculation of prediction intervals)

hrane

