Ratio of Mean (RoM) as an Effect Measure in Meta-Analysis of Continuous Outcome

Cardiff SMG short course March 4-5, 2010

Jan O. Friedrich, Neill Adhikari, Joseph Beyene University of Toronto and McMaster University

Objectives

- Briefly review conventional mean difference methods for pooling continuous variables in meta-analyses
- Introduce the Ratio of Means (RoM) as a clinically interpretable alternative
 - Compare performance characteristics of RoM to mean difference methods using simulation
 - Compare treatment effects and heterogeneity using an empirical study of a large number of clinically diverse Cochrane meta-analyses pooling continuous outcomes

Conventional Effect Measures in Meta-Analyses of Continuous Outcomes

Continuous Outcomes

- Difference Methods Traditionally Used
 - Mean Difference (MD)
 - Standardised Mean Difference (SMD)
 - mean difference expressed in pooled standard deviation units

Continuous Outcomes - MD

- Mean Difference (MD)
 - Advantages:
 - Easy to interpret
 - <u>Disadvantages</u>:
 - Requires variable to be reported in identical units in all studies

Continuous Outcomes - SMD

- Standardised Mean Difference (SMD)
 - Advantages:
 - Allows pooling of studies when outcomes are measured in different units
 - Allows comparisons of effect sizes across different interventions
 - 0.2 (small), 0.5 (medium), 0.8 (large)
 - Disadvantages:
 - Variance dependent on the actual value of the SMD leading to "negative bias" (towards no treatment effect) and decreased heterogeneity due to lower weighting of extreme values
 - Interpretations requires knowledge of the pooled standard deviation, a quantity generally unknown to clinicians

Conventional Effect Measures -Summary

	Variable Type				
	Binary	Continuous			
Difference	RD	MD, SMD			
Ratio	RR, OR	?			

Ratio of Means (RoM)

An alternative effect measure for continuous outcomes

Ratio of Means (RoM)

RoM = <u>mean_{exp</u></u></u>}

mean_{control}

 approximate variance can be obtained using the delta method after logarithmic transformation

$$Var[\ln(RoM)] = \frac{1}{n_{exp}} \left(\frac{sd_{exp}}{mean_{exp}}\right)^2 + \frac{1}{n_{contr}} \left(\frac{sd_{contr}}{mean_{contr}}\right)^2$$
$$= \frac{CV_{exp}^2}{n_{exp}} + \frac{CV_{contr}^2}{n_{contr}}$$

 apply the generic inverse variance method using the estimate and its standard error (i.e. ln(RoM) and SE[ln(RoM)]) for each study

Ratio of Means (RoM)

Potential Advantages

- Like SMD
 - Allows pooling of studies when outcomes are measured in different units
 - Allows comparisons of effect sizes across different interventions
- Unlike SMD
 - Does not require knowledge of pooled SD
- Has a form similar to RR, an effect measure understood by clinicians

Ratio of Means (RoM)

- Potential Disadvantages
 - Requires both experimental and control values to have same sign
 - Variance equation approximated using firstorder terms (higher order terms excluded)

Motivating Example: MD, SMD and RoM

 Renal physiological outcomes of low-dose dopamine Effect Measure (*p-value*)/*I*²

	MD	<u>SMD</u>	<u>RoM</u>
Urine Output		0.5 (<. <i>001)</i> 71%	1.24 <i>(<.001)</i> 77%
Serum Creatinine	-3.5 μM <i>(.01)</i> 73%	-0.3 <i>(.04)</i> 79%	0.96 <i>(.01)</i> 73%

Friedrich JO, Adhikari N, Herridge MS, Beyene J. Ann Intern Med. 2005;142:510-24.

Continuous Outcomes – Simulation

Friedrich, Adhikari, Beyene: *BMC Med Res Method* 2008,8:32

Continuous Outcomes – Simulation

- Data sets were simulated and meta-analyses were carried out using all three continuous outcome effect measures (MD, SMD, RoM)
 - 10,000 simulated data sets per scenario
 - Random effects model (inverse variance weighting)
- Parameters Varied:
 - Number of Patients Per Trial
 10, 100
 - Number of Trials 5, 10, 30
 - Standard Deviation (SD) 10, 40, 70 % of mean

(set it equal between control and experimental groups)

- Effect Size 0.2, 0.5, 0.8 (SD units)
- Heterogeneity (τ) 0, 0.5 (SD units)

Continuous Outcomes – Simulation

Baseline Scenario: stdev 40% mean, effect size 0.5, no heterogeneity

	Stud-	Bias	; (% mei	an)	%Co	verag	e
Pts	ies	MD	SMD	RoM	MD	SMD	<u> RoM</u>
10	5	0	-4	0	95	97	95
	10	0	-5	0	95	97	95
	30	0	-5	0	94	96	96
100	5 10 30	0 0 0	0 0 0	0 0 0	96 96 96	97 96 96	96 96 96

Continuous Outcomes – Simulation

Baseline Scenario: stdev 40% mean, effect size 0.5, no heterogeneity

	Stud	- Bia	s (% me	an)	%Po	wer	
<u>Pts</u>	ies	MD	SMD	RoM	MD	SMD	<u>RoM</u>
10	5	0	-4	0	64	<u>57</u>	62
	10	0	-5	0	91	<u>89</u>	90
	30	0	-5	0	100	100	100
100	5	0	0	0	100	100	100
	10	0	0	0	100	100	100
	30	0	0	0	100	100	100

Continuous Outcomes – Simulation

Broadened Mean Scenario: stdev 70% mean, effect size 0.5, no heterogeneity

	Stud	Bias	; (% me	an)	%Co	verag	e
Pts	ies	MD	SMD	RoM	MD	SMD	<u>RoM</u>
10	5 10 30	0 0 0	-4 -5 -5	-1 -2 -2	95 95 94	97 97 96	95 95 <u>92</u>
100	5 10 30	0 0 0	0 0 0	0 0 0	96 96 96	97 96 96	96 96 95

Continuous Outcomes – Simulation

Broadened Mean Scenario with Heterogeneity (*z*=0.5): stdev 70% mean, effect size 0.5

	Stud	Bias	: (% mei	an)	%Co	verag	8
Pts	ies	MD	SMD	RoM	MD	SMD	RoM
10	5 10 30	0 0 0	-5 -6 -6	-1 -2 -3	90 92 94	92 93 93	91 92 91
100	5 10 30	0 0 0	0 0 0	2 1 1	88 92 94	88 92 94	87 90 92

Continuous Outcomes – Simulation

Broadened Mean Scenario with Heterogeneity (*z*=0.5): stdev 70% mean, effect size 0.5

	Stud-	Bias ((% mea	an)	%Cc	verag	9
<u>Pts</u>	ies	MD	SMD	RoM	MD	SMD	<u>RoM</u>
10	5	0	-5	-1	90	92	91
	10	0	-6	-2	92	93	92
	30	0	-6	-3	94	93	91
100	5	0	0	2	88	88	87
	10	0	0	1	92	92	90
	30	0	0	1	94	94	92

Continuous Outcomes – Simulation

Broadened Mean Scenario with Heterogeneity (*z*=0.5): stdev 70% mean, effect size 0.5

	Stud	Bias	s (% mea	an)		Hete	rogei	1 (P)
<u>Pts</u>	ies	MD	SMD	RoM	Δ	/ID	SME	<u> RoM</u>
10	5	0	-5	-1	5	9	48	47
	10	0	-6	-2	6	60	47	47
	30	0	-6	-3	6	0	47	48
100	5	0	0	2	g	3	92	91
	10	0	0	1	g	3	92	91
	30	0	0	1	ę	3	92	91

Summary of Simulation Results of Continuous Outcomes

- Bias:
 - MD: Low Bias (<1.5%) for all scenarios
 - SMD: Negative bias with small studies (5-6%)
 - RoM: 1) Negative bias with small studies and large within-study standard deviations (3-4%)
 - 2) Positive bias with large studies and increasing heterogeneity (1-2%)

Summary of Simulation Results of Continuous Outcomes

- Coverage:
 - Relatively similar between methods
 - Close to expected 95% for scenarios without heterogeneity
 - Decreases to low 90% or high 80% range when heterogeneity is introduced

Summary of Simulation Results of Continuous Outcomes

- Statistical Power:
 - As expected, increases with increasing effect size, number of patients, and number or trials, and decreases when heterogeneity is introduced
 - Relatively similar for the three methods in most scenarios
 - Decreased statistical power of SMD or RoM in scenarios where they exhibit negative bias, compared to MD
 - However, the effect of these biases is relatively small so that the differences in statistical power between the effect measures are less than 5 percentage points

Summary of Simulation Results of Continuous Outcomes

- Heterogeneity:
 - In scenarios where SMD and RoM are biased, heterogeneity, expressed as *P*, is lower compared to MD, which is relatively free of bias.
 - This occurs because bias decreases the weighting of the extreme values, decreasing heterogeneity
 - In the scenarios exhibiting less bias, heterogeneity among all methods is more similar

RoM – Summary and Conclusions from Simulation

• RoM

 Appears to exhibit comparable statistical performance characteristics in terms of bias, coverage, power and heterogeneity, compared to MD and SMD

Continuous Outcomes – Empirical Study

 Compare treatment effects and heterogeneity for MD, SMD, and RoM in a large sample of clinically diverse metaanalyses pooling continuous outcomes

Friedrich, Adhikari, Beyene: Journal of Clinical Epidemiology (revised manuscript submitted)

Continuous Outcomes – Empirical

• Methods:

- Searched the Cochrane Database of Systematic Reviews for all reviews containing :
 - "wmd" or "weighted mean difference", or
 - "smd" or "standardis(z)ed mean difference"

in the title, abstract, or keywords

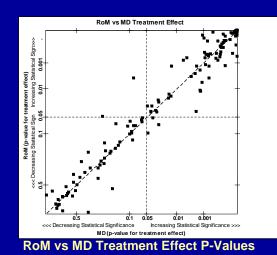
 Included reviews containing at least one metaanalysis of at least 5 trials and reporting a continuous outcome (MD or SMD)

Continuous Outcomes – Empirical

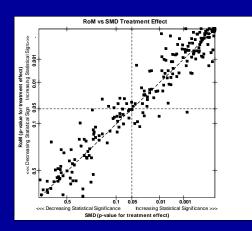
- Methods:
 - conducted meta-analysis using
 - RoM
 - SMD
 - MD (if possible, i.e. identical units in all trials)

using inverse variance weighting and randomeffects models

Continuous Outcomes – Empirical


- Methods:
 - Differences in p-values
 - treatment effects
 - heterogeneity (Cochran's Q statistic)
 tested using the sign test
 - Pairwise differences between methods
 - treatment effect (threshold p-value of 0.05)
 - heterogeneity (threshold p-value of 0.10 for Q) assessed with Exact tests.

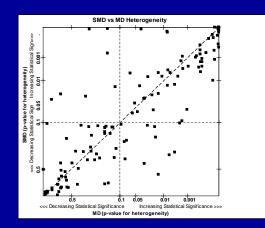
Empirical Study – Results (Search)


- 897/5053 (18%) mentioned WMD and/or SMD in title, abstract or key words
 - 232/897 (26%) included
 - -665/897 (74%) excluded
 - 628 (70%) less than 5 trials
 - 37 (4%) mixture of negative and positive values
- 143/232 (62%) used MD
- 89/232 (38%) used SMD

Empirical Study - Results (Treatment Effects)

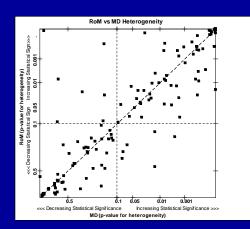
- Median SMD 0.33 (IQR 0.16-0.62)
- Median RoM change away from unity 14%
 (IQR 7-31%)
- There was no meta-analysis in which two effect measures were both statistically significant and in opposite directions.
 - only 1/143 (MD) and 3/232 (SMD) meta-analyses gave pooled results in the opposite direction to RoM (all p-values >0.3)

Similar treatment effect p-values (Sign Test p=0.49) Similar discordant pairs (2 vs 3 [p=1.00])

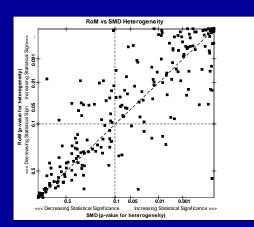

RoM vs SMD Treatment Effect P-values Similar treatment effect p-values (Sign Test p=0.21) Similar discordant pairs (7 vs 8 [p=1.00])

Empirical Study - Results (Treatment Effects)

	RoM vs MD	RoM vs SMD	SMD vs MD					
	<u>(n=143)</u>	<u>(n=232)</u>	<u>(n=143)</u>					
Median Diffe	rence in p-val	ues						
Median Diff	+7(10 ⁻¹⁶)	-3(10 ⁻¹⁰)	+2(10 ⁻¹²)					
IQR	(-0.001,0.002)	(-0.004,0.003)	(-0.001,0.003)					
Sign Test p=	0.49	0.21	0.31					
Discordant Pairs								
Number	5 (3%)	15 (6%)	7 (5%)					
Distribution	2 vs 3 (p=1.00)	7 vs 8 (p=1.00)	4 vs 3 (p=1.00)					


Empirical Study - Results (Heterogeneity)

- The percentage of meta-analyses with statistically significant heterogeneity relatively similar
 - Q-statistic p<0.10
 - 61% RoM
 - 58% MD
 - 56% SMD
 - $-l^2$ statistic > 25%
 - 69% RoM
 - 70% MD
 - 66% SMD


SMD vs MD Heterogeneity Q-Stat. P-value

SMD demonstrates lower heterogeneity p-values (p=0.004 by Sign Test) No statistically significant directional assymmetry in discordant pairs (7 vs 12 [p=0.36])

RoM vs MD Heterogeneity Q-Stat. P-values

RoM demonstrates lower heterogeneity p-values (Sign Test p=0.007) Similar discordant pairs (7 vs 6 [p=1.00])

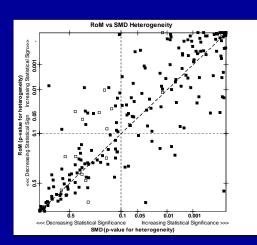
RoM vs SMD Heterogeneity Q-Stat. P-value

SMD demonstrates lower heterogeneity p-values (Sign Test p=0.005) SMD demonstrates a lower number of discordant pairs (21 vs 9 [p=0.04])

Empirical Study - Results (Heterogeneity)

	RoM vs MD	RoM vs SMD	SMD vs MD						
	<u>(n=143)</u>	(n=232)	<u>(n=143)</u>						
Median Difference in p-values									
Median Diff	+4(10 ⁻⁷)	-5(10 ⁻⁷)	+9(10 ⁻⁷)						
IQR	(-0.001,0.019)	(-0.027,0.008)	(-0.010,0.024)						
Sign Test p=	0.007	0.005	0.004						
Discordant Pairs									
Number	13 (9%)	30 (13%)	19 (13%)						

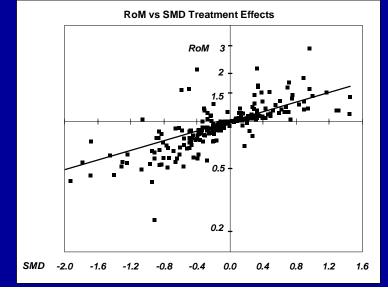
7 vs 6 (p=1.00) 21 vs 9 (p=0.04)


Distribution

7 vs 12 (p=0.36)

Empirical Study - Results (Heterogeneity): RoM vs SMD

	Small Trials	Large Trials
Mean patients/trial arm:	<u><</u> 15	>15
	<u>(n=24)</u>	<u>(n=208)</u>
Discordant Pairs		
Number	6 (25%)	24 (12%)
Distribution	6 vs 0 (p=0.04)	15 vs 9 (0.31)


This effect is consistent with the known bias of SMD to no effect and less heterogeneity in smaller trials.

RoM vs SMD Heterogeneity Q-Stat. P-value

SMD demonstrates lower heterogeneity p-values (Sign Test p=0.005) SMD demonstrates a lower number of discordant pairs (21 vs 9 [p=0.04])

SMD vs. ROM (treat effects)

SMD vs. RoM

- Linear regression without intercept
- ln(RoM) = 0.352 * SMD.
- SMDs of 0.2, 0.5, and 0.8, correspond to increases in RoM of approximately 7%, 19%, and 33%, respectively

RoM – Summary of Empirical Study

• RoM

- demonstrated similar treatment effect estimates compared to MD and SMD
- RoM demonstrated less heterogeneity than MD, but more than SMD (SMD demonstrated less heterogeneity than MD)
 - Considering statistically significant heterogeneity (discordant pairs), fewer meta-analyses showed heterogeneity only with SMD compared to RoM and this effect appeared to be restricted to the small trial meta-analyses

RoM – Conclusions based on Empirical Study

- Similar treatment effects among RoM, MD, and SMD
- Some differences in heterogeneity
 - difficult to separate out true differences from the influence of known biases towards no effect and decreased heterogeneity for SMD and RoM under certain conditions

RoM – Overall Summary and Conclusions

- RoM provides the option of using a ratio effect measure in addition to the traditionally used difference methods (MD and SMD)
 - Simulation suggests RoM exhibits comparable performance characteristics in terms of bias, coverage, power and heterogeneity
 - Empirical data suggests RoM yields similar pooled treatment effect estimates and heterogeneity
- RoM should be considered as an alternative effect measure for analysing continuous outcomes in meta-analysis