

Workshop outline

<u>The Basics: indirect comparisons</u>

- What are indirect comparisons & why are they necessary
- Exercise: how to do an indirect comparison (calculator)
- <u>Slightly more advanced:</u>
- Checking assumptions for IC (and NMA) with exercise
 Checking consistency
- What does an NMA look like?
- Advantages and examples of NMA
- Meta-regression approach
- Methodological challenges

Slide 3

Multiple treatment decision-making

- For many clinical indications there will often be several possible interventions.
- The Cochrane Database of Systematic Reviews

 22 interventions for adult smoking cessation
 - >12 interventions for chronic asthma in adults
- Health care decisions should be based on 'best available' evidence from systematic reviews & metaanalysis of RCTs

Problem...

- Systematic reviews focus on direct, head-tohead comparisons of interventions.
 – e.g. NRT vs placebo; Olanzapine vs placebo
 - A vs B; A vs C.
- The evidence base consists of a set of pairwise comparisons of interventions

 Placebo comparisons of limited use to the practitioner or policy-maker who wants to know the 'best' treatment to recommend/ prescribe.

Slide 5

Problem... (2)

- 'Best available' evidence is not always available or sufficient
 Placebo controlled trials sufficient for regulatory
 - approval of new drugs
 - Even when active comparisons have been made such direct evidence is often limited.
- Therefore, evidence base may not contain treatment comparisons of relevance for clinician or policy maker.

Slide 15

Pen and paper exercise. $LRR_{BC} = LRR_{AC} - LRR_{AB}$ $Irr_{AB} = -0.06$ $Irr_{AC} = -0.93$ $Irr_{BC} = Irr_{AC} - Irr_{AB} = -0.93 - (-0.06) = -0.87$ Indirect RR_{BC} = exp(Irr_{BC}) = <u>0.42</u>

Slide 17

When is an indirect comparison sensible...

- Validity relies on the AB & AC RCTs being <u>similar</u> across factors which may affect the outcome (modify treatment effect).
- A clinical/ epidemiological judgement:
 - No treatment by comparison interaction
 Assuming inclusion/ exclusion criteria same across comparisons
- Patients, trial protocols, doses, administration etc are similar in ways which might modify treatment effect.

Slide 18

"Between-trial comparisons [Indirect Comparisons] are unreliable. Patient populations may differ in their responsiveness to treatment. Therefore an apparently more effective treatment may have been tested in a more responsive population"

Cranney, Guyatt et al. End Rev 2002, 23; 570-8

"Placebo controlled trials lacking an active control give little useful information about comparative effectiveness. Such information cannot reliably be obtained from cross-study comparisons, as the conditions of the studies may have been quite different"

International Council of Harmonisation E10 2.7.1.4

Slide 20

"Indirect comparisons are observational studies across trials, and may suffer the biases of observational studies, for example confounding"

Cochrane Handbook for systematic reviews of interventions 4.2.5. Cochrane Library Issue 3

(Watch this space for CMIMG update...)

Slide 21

Checking assumptions

Exercise:

 Using the forest plots and study characteristics tables provided, work with a neighbour/ in small groups to discuss whether the AB and AC trials are similar enough across factors which may modify treatment effect.

Suggested time: <u>10 minutes</u>

Handout: trial characteristics

Alarm vs pla	acebo characteris	tics of studie	<u>s</u>				
	Age	Boys(%)	Exclusion	Previous treatment	Dropouts	Baseline wetting (SD)	Recruitment/setting
Bennet	8.5 (5-12)	63%	Gross psychopathology	Exc. If previous behavioural	32/40	2.7 in 14 nights	GP referral
Bollard(a)	9.6	71%	No details	No details	3/45	4.97 per week	No details
Bollard(b)	8.9	82%	No details	No details	12/100	5.56 mean wet nights	No details
Houts	5-13	63%	No details	No details	7/56	5.41(1.63) mean wet nights/week	Media/ consultant referral
Jehu	9.3 (4.8-14.6)	64%	No details	Exc. If previous alarm	1/39	4 mean wet nights/week	childrens home
Lynch	5-12	Not clear	Daytime wetting	No details	6/60	11.33 in 14 nights	School/ consultant referral
Moffatt	8-14	Not clear	No details	No details	5/121	64% wet nights	Hospital clinic
Nawaz	7-12	50%	Psychiatric pathology	No details	0/36	5.67 per week	GPs
Ronen	10 (SD 2.28)	48%	Developmental problems	No details	23/77	19.1 days in 3 weeks	Mental health clinic
			<5years				
Sacks	5.5-14	Not clear	Severe psychosis	No details	Not clear	No details	No details
Sloop	12.5(7-18)	52%	Severe behavioural probs.	No previous treatment	Not clear	3.99 Not clear	Residential setting for
			tranquilisers				learning disabled
Wagner	7.9('5-14)	51%	IQ<70	No conditioning treatment	0/39	84% wet nights per week	No details
Wagner(b)	6-16	82%	Daytime wetting	Drugs/alarm in prev. y	13/49	72%3x week	Media/consultant referral/school/GP
Werry	9.99 (SD 2.25)	66%	Dry >3months	No details	10/70	Min 1x per week	Hospital clinic

Imipramine vs placebo characteristics of studies

	Age	Boys(%)	Exclusion	Previous treatment	Dropouts	Baseline wetting (SD)	Recruitment/setting
Argawala	6-12	52%	Mental disability	Some patients had imipramine	29	No details	No details
Forsythe	4-15	64%	No UTI	No details	51/298	>6xper week/ for 1yr	Children's hospital
Hodes	5-15	Not clear	No details	No details	No details	No details	GP
Khorana	8.2 (5-15)	74%	Severe mental disability	No details	24/100	No details	Psychiatric inpatients (India)
Manhas	5-15	43%	No details	No details	No details	No details	No details
Poussaint	5-16	77%	No details	3 had psychotherapy	7/47	5.6 per week	No details
Schroder	3.5-10	No details	Organic causes	Resistant to previous therapy	34/62	No details	No details
Smellie	5-13	81%	Organic causes	No details	4/80	1.4 Dry nights	No details
Tahmaz	6-14	100%	Organic causes	Fluid reduction/ night waking	11/30	No details	Military hospital (Turkey)
			Daytime wetting				
Wagner	6-16	82%	Davtime wetting	Drugs/alarm in prev. vr	13/49	72% 3x week	Media/consultant referral/school/GP

		mipramine versus no	treatment
		Risk Ratio	Risk Ratio
Study or Subgroup	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Agarwala 1965	10.1%	0.93 [0.83, 1.05]	1
Forsythe 1969	28.3%	0.99 [0.95, 1.02]	
Hodes 1973	10.6%	0.96 [0.77, 1.18]	+
Khorana 1972	13.0%	0.55 [0.42, 0.73]	-
Manhas 1967	9.2%	0.36 [0.22, 0.59]	-
Poussaint 1965	3.3%	0.44 [0.20, 0.96]	
Schroder 1971	10.2%	1.04 [0.95, 1.15]	t
Smellie 1976	7.0%	0.21 [0.08, 0.53]	
Tahmaz 2000	4.7%	0.64 [0.36, 1.13]	
Wagner 1982b	3.8%	0.73 [0.47, 1.12]	
Total (95% CI)	100.0%	0.77 [0.72, 0.83]	,
Total events			
Heteroneneity: Chi2 -	260 00 df -	P = 9 (P < 0.00001); $P = 979$	

Slide 25

Network meta-analysis

Combines direct and indirect evidence. Also known as: 1) Mixed treatment comparison

2) Multiple treatment meta-analysis

- ALL 3 mean the same thing <u>simultaneous</u> comparison of multiple competing treatments using direct & indirect evidence (usually from RCTs) in a single analysis.
- SAME assumption as made for indirect comparison alone: the consistency assumption.

NMA: The **big** assumption

IC and NMA assume that the "Direct" and "Indirect" evidence estimate the same parameter, i.e. are CONSISTENT.

That the Treatment effect μ_{BC} estimated by the BC trials, would be the same as the treatment effect estimated by the AC and AB trials (if they had included B and C arms).

Nearly all the doubts about IC and NMA are doubts about this assumption.

Slide 31

Slide 32

Bucher approach to checking consistency

The difference ω between direct ${\rm LRR}_{\rm BC}$ and indirect ${\rm LRR}_{\rm BC}$ $\hat{\omega}$ = -0.257 - -0.87 = 0.61

To calculate the standard error of the difference we sum the SE from the direct and indirect log risk ratios

 $SE(\Delta) = \sqrt{SE(LLR^{Direct})^2 + SE(LRR^{Indirect})^2}$

 $=\sqrt{0.095^2+0.091^2} \quad = 0.13$

Bucher approach to checking consistency Calculate confidence intervals & p-values for : $\hat{\omega}$ 95% CI = $\hat{\omega} \pm (1.96^{\circ}SE) = \exp [0.36]$ to $\exp [0.86]$ = 1.43 to 2.37 z-score = $\hat{\omega}$ $\overline{SE(\hat{\omega})}$ = 4.64 p-value = <0.000002

Slide 34

Limitations of simple approach Straightforward & conceptually intuitive – Extension of pairwise meta-analysis – Checking consistency of evidence BUT it is very LIMITED: – Pool separately for each treatment comparison (separate meta-analyses) What happens when Treatments 4 5 6 7 8 9 10 11 Pairwise 6 10 15 21 28 36 45 55 Indirect 12 30 60 105 168 252 360 495

Key Messages

- Network meta-analysis is an extension of standard, pair-wise meta-analysis; meta-regression, generalized linear model, and Bayesian approaches could be used.
- ► To ensure validity of findings from meta-analyses, the systematic review, whether it involves a standard, pair-wise meta-analysis or a network meta-analysis, must be designed rigorously and conducted carefully.

Slide 37

Slide 38

An Overview of Meta-regression

- In primary studies we use regression to examine the relationship between one or more covariates and a dependent variable.
- The same approach can be used with meta-analysis, except that
 - Unit of analysis, each observation in the regression
 - or analysis, each observation in the regression model, is usually a study; Dependent variable is the summary estimate in each primary study rather than outcomes measured in individual participants;
 - *Covariates* are *at level of the study* rather than the level of the participant.

38

Why do a Meta-regression?
 Examine the relationship between study-level characteristics and intervention effect Study potential effect modification: Does the intervention effect (association) vary with different population or study characteristics?
 Explore and explain between study variation

39

		Vaccinated		Control				
ID	Study	тв	No TB	тв	No TB	RR ¹	SE(InRR)	Latitude
1	Ferguson_1949	6	300	29	274	0.205	0.441	55
2	Hart_1977	62	13536	248	12619	0.237	0.141	52
3	Aronson_1948	4	119	11	128	0.411	0.571	44
3	Stein_1953	180	1361	372	1079	0.456	0.083	44
4	Rosenthal_1961	17	1699	65	1600	0.254	0.270	42
4	Rosenthal_1960	3	228	11	209	0.260	0.644	42
5	Comstock_1976	27	16886	29	17825	0.983	0.267	33
5	Comstock_1969	5	2493	3	2338	1.562	0.730	33
6	Coetzz_1968	29	7470	45	7232	0.625	0.238	27
7	Vandiviere_1973	8	2537	10	619	0.198	0.472	19
8	Comstock_1974	186	50448	141	27197	0.712	0.111	18
9	Frimodt_1973	33	5036	47	5761	0.804	0.226	13
9	TB Preventiaon Trial_1980	505	87886	499	87892	1.012	0.063	13
	 RR <1.0 indicates the The higher the latitude (used as surrogate for 	vaccine of the farth climates	decrease er away).	d the r the stu	isk of TI Idy loca	3. tion was	from the e	quator

Slide 43

Network Meta-analysis using Meta-regression and Other Approaches

Slide 44

What is a Network Meta-analysis?

Network (multiple treatments comparison) metaanalysis:

Meta-analysis, in the context of a systematic review, in which three or more treatments have been compared using both direct and indirect evidence from several studies.

Bucher 1997; Caldwell 2005; Glenny 2005; Song 2003; Li 2011

$In(OR)$ of $Y = (\mu')$	compared to Strep $^{A}, \mu^{B}, \mu^{C}, \mu^{C}$	tokinase (RE N $^{D}, \mu^{E}) \times \lambda$	Nodel) $X + \Delta$
	Treatment	LOR(SE)	
	t-PA	-0.02 (0.03)	
	Anistreplase	-0.00 (0.03)	
	Accelerated t-PA	- 0.15 (0.05)	
	Angioplasty	- 0.43 (0.20)	
	Reteplase	- 0.11 (0.06)	
			50

Slide 52

Methodologic Challenges and Research Opportunities for Network Meta-analysis


```
Slide 54
```


Potential Bias in Study and Data Selection - Publication Bias

> "Among placebo-controlled antidepressant trials registered with the FDA, *most negative* results are unpublished or published as positive."

- 5 sertraline trials registered with FDA
 1 positive trial was published
 1 negative trial was published as positive

62

• 3 were never published

nce: Ioannidis JP. Lancet 2009; 373:1759-1760

Discrepant F	Rankings of Effe	ect Sizes for Eff	ectiveness o	f Antidepre
	interdelector second code	Pages and pages	And in fast	
tento -	10	111	+	T.L.
Oslipse.	*	10	5	10 C
Adapted 1	10	1	17	14.
Droken-	54	4	л.	3
North Control of Contr	CM C	10		+
Mobulgher	3	4	1	24
letions.	24	168		1.1
Parsaties			3	60
Parageter (2)	18911	2Marsh	10	34
Settline	6	6.9	A.	1
technican.	1.8411	194	181	41
Without R.	н	24	T	1
Manthea,			- R	
Pleisenier			a	22
Report .			-	
nesters .				£.,

Slide 64

a conventional systematic review	comparison and network meta-analysis				
Define the review question and eligibility criteria	Define "network" Inclusion of observational studies for harms?				
Search for and select studies	Rely on studies included in published systematic reviews vs. a new comprehensive literature search? Different sources of data?				
Assess risk of bias, collect data	Quality of indirect and combined evidence? Efficiency Workforce				
Synthesize evidence	Extremely important but often overlooked				
qualitatively	Heterogeneity, inconsistency				
	Subgroup analysis, meta-regression, sensitivity analysis Individual patient data notwork meta-analysis				
quantitatively	Rare events, missing data				
	 More/less bias? Adjustment of bias 				
Interpret results and	 Implementation and user friendly software 				
draw conclusions	 Interpretability and recommendations 				
Report findings	Reporting standards, peer-review				

Slide 65

Key Messages

- Network meta-analysis is an extension of standard, pair-wise meta-analysis; meta-regression, generalized linear model, and Bayesian approaches could be used.
- To ensure validity of findings from meta-analyses, the systematic review, whether it involves a standard, pair-wise meta-analysis or a network meta-analysis, must be designed rigorously and conducted carefully.