Systematic review of multivariable prediction studies: an individual participant data meta-analysis approach

Thomas Debray, Hans Reitsma, Karel Moons, Richard Riley

for the Cochrane Prognosis Review Methods Group
(Co-convenors: Doug Altman, Katrina Williams, Jill Hayden, Sue Woolfenden, Richard Riley, Karel Moons)
Conflict of interest

We have no actual or potential conflict of interest in relation to this presentation
Workshop objectives

Provide guidance to conduct individual participant data (IPD) meta-analysis in prediction research

• To explain prediction research
• To describe potential benefits of IPD
• To identify challenges for IPD reviews
• To provide examples of IPD meta-analyses
• To describe appropriate methods
• To illustrate novel methods using real-life case studies
Prediction

• Risk prediction = foreseeing / foretelling
 ... (probability) of something that is yet unknown

• Turn available information (predictors) into a statement about the probability:
 ... of having a particular disease -> diagnosis
 ... of developing a particular event -> prognosis
Diagnostic modelling study

- Subjects with presenting symptoms

 Predictors:
 - Patient characteristics (symptoms & signs)
 - Imaging tests
 - Laboratory tests
 - etc.

 Outcome: Disease present or absent

Cross-sectional relationship

Prognostic modelling study

- Subjects in a health state

 Predictors:
 - Patient characteristics
 - Disease characteristics
 - Imaging tests
 - Biomarkers
 - etc.

 Longitudinal relationship

 Outcome: Development of event Y

End of follow-up
Prognosis studies: Examining future outcomes in subjects with a certain health condition in relation to demographic, disease and subject characteristics
 – not necessarily sick people

Use of prognostic information:
 – to inform patients and their families
 – to guide treatment and other clinical decisions
 – to create risk groups for stratifying severity in clinical studies
 – insight in disease > clues for aetiology and new therapies
Main types of prognosis studies
PROGRESS series 2013: BMJ and Plos Med

Aim of prognostic studies may be:
• Average/overall prognosis: 'What is the most likely course (outcome) of people with this health condition?'
• Prognostic factors: 'What factors are associated with that outcome of interest?'
• Prognostic (prediction) models: ‘What is the absolute risk in individual subjects, based on multiple risk factors?’
• Model validation: ‘What is the best model or how good is a model in particular setting?’

Focus this workshop: IPD-MA of prediction model studies
Prediction in Diagnosis

- Diagnostic studies: Examine the relationship of test results in relation whether a particular condition is present or absent.
 - patients suspected for the condition of interest or screening
 - cross-sectional relationship (here and now)
 - tests can include demographic, signs & symptoms, lab, imaging, etc

- Use of diagnostic information:
 - to start or refrain from treatment
 - further testing
Main types of diagnostic studies

• Technical evaluation studies
• Single test or comparative accuracy evaluation studies
• Multivariable diagnostic prediction models

Focus this workshop: IPD-MA of multivariable prediction studies
Prediction models

Predictors (in both diagnostic & prognostic models) are from:

- history taking
- physical examination
- tests (imaging, ECG, biomarkers, genetic ‘markers’)
- disease severity
- therapies received
Prediction models

Presented as:
• Mathematical formula requiring computer
• Simple scoring rules
• Score charts / Nomograms
Table 9–1. Apgar scoring.

<table>
<thead>
<tr>
<th>Signs</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeat per minute</td>
<td>Absent</td>
<td>Slow (<100)</td>
<td>Over 100</td>
</tr>
<tr>
<td>Respiratory effort</td>
<td>Absent</td>
<td>Slow, irregular</td>
<td>Good, crying</td>
</tr>
<tr>
<td>Muscle tone</td>
<td>Limp</td>
<td>Some flexion of extremities</td>
<td>Active motion</td>
</tr>
<tr>
<td>Reflex irritability</td>
<td>No response</td>
<td>Grimace</td>
<td>Cry or cough</td>
</tr>
<tr>
<td>Color</td>
<td>Blue or pale</td>
<td>Body pink, extremities blue</td>
<td>Completely pink</td>
</tr>
</tbody>
</table>

\[\Sigma = \text{Apgar score (0-10)} \]
Predicting bacterial cause in infectious conjunctivitis

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Odds ratio (95% CI)</th>
<th>Regression coefficient</th>
<th>Clinical score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two glued eyes</td>
<td>14.99 (4.36 to 51.53)</td>
<td>2.707</td>
<td>5</td>
</tr>
<tr>
<td>One glued eye</td>
<td>2.96 (1.03 to 8.51)</td>
<td>1.086</td>
<td>2</td>
</tr>
<tr>
<td>Itching</td>
<td>0.54 (0.26 to 1.12)</td>
<td>-0.61</td>
<td>-1</td>
</tr>
<tr>
<td>History of conjunctivitis</td>
<td>0.31 (0.10 to 0.96)</td>
<td>-1.161</td>
<td>-2</td>
</tr>
<tr>
<td>Area under ROC curve (95% CI)</td>
<td>0.74 (0.65 to 0.82)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ROC = receiver operating characteristics.
*Clinical scores of every symptom present are added up. For example, a patient with two glued eyes, itch, and no history of conjunctivitis has a clinical score of: 5 + (−1) = 4.

Rietveld et al. BMJ 2004;329:206
Why focus on prognostic prediction models? (Steyerberg 2009)
Four phases of prediction modelling
BMJ series 2009 (Altman, Moons, Royston, Vergouwe)

1. Developing a prediction model
2. Validate the model in other subjects
3. Update existing model to local situation
4. Quantify model’s impact on doctor’s decision making and patient outcome (cost-effectiveness)

What is big difference between 4 versus 1-3?

Focus on 1-3
Prediction model performance measures

- **Calibration** plot
 (for specific time point in case of survival models)
- **Discrimination**
 - C-statistic (ROC area for logistic regression)
- **(Re)classification** → requires probability thresholds
 - Assess the potential effect on patient-level outcomes
 - Comparative test accuracy studies
 - Examples: Net Reclassification Index, Net Benefit, ...
Calibration plot

Ideal calibration
Observed versus expected risk (O/E) = 1
Slope = 1
Calibration plot

- O:E = 1
- Slope = 0.79

Sub-optimal slope because curve does not follow reference line
Model to predict cardiovascular morbidity/mortality

AUC 0.76
AUC 0.77

Wang TJ, et al. NEJM
What are the main differences between prediction and intervention research?

<table>
<thead>
<tr>
<th>Intervention research</th>
<th>Prediction research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim: Estimate (relative) effects of a specific treatment, across different populations or subgroups</td>
<td>Aim: Estimate absolute risk probabilities for distinct individuals across different populations or subgroups</td>
</tr>
<tr>
<td>Typical design: Randomized Clinical Trials</td>
<td>Typical design: observational studies (e.g. cohort study), RCTs, ...</td>
</tr>
<tr>
<td>Evaluation: bias and precision of estimated comparative treatment effects</td>
<td>Evaluation: model discrimination and calibration</td>
</tr>
</tbody>
</table>
Pitfalls of prediction research

- The **quality** of much prognosis research is poor (incomplete reporting, poor data sharing, incomplete registrations, absent study protocols)
- Development dataset often **too small or too local**
- Most prediction models are never validated in independent data (**external validation**)
- **Heterogeneity** across studies and settings, requiring local adjustments
- Many prediction models **generalize poorly** across different but related study populations, and tend to perform more poorly than anticipated when applied in routine care
Overcoming the problems of heterogeneity and poor reporting

• **Collaboration** of research groups required to seek **consistency** in cut-offs, adjustment factors, outcomes, analysis, measurement methods, etc.

• Improve study design standards -> more **protocol** driven, rather than additional post-hoc analyses of data ‘on the shelf’

• Promote better reporting: REMARK and TRIPOD

• Collaborate across research groups to pool existing **IPD** and conduct **IPD meta-analysis**

• Design **large prospective studies** to answer pre-specified questions of clinical interest
Advantages over aggregate data (AD) meta-analysis

• Meta-analysis of reported summary statistics already implemented to ...
 – Summarize the performance of an existing model
 – Summarize the (adjusted) association between a marker and outcome of interest
 – Combine existing prediction models
 – See other workshop! (Friday)

• AD has limited capabilities to ...
 – Combine statistics of interest (e.g. due to variations in modeling approaches and reporting)
 – Account for between-study heterogeneity
 – Investigate modifiers of model performance
The benefit of having IPD from each study

IPD would overcome poor reporting and differences in data analysis approaches by allowing:

• Data checking
• Consistent statistical analysis in each study
• Verification of model assumptions
• Calculation of estimates of interest
• Proper handling of continuous variables
The benefit of having IPD from each study

IPD would limit heterogeneity in
- Type of estimates (adjusted/unadjusted)
- Type of association (dichotomized/linear/nonlinear)
- Type of outcome
- Adjustment factors
The benefit of having IPD from each study

IPD from multiple studies facilitates

- Model development studies
 - Investigation of more complex associations (e.g. nonlinearity, interaction and time-varying effects)
 - Identify added value of novel markers
 - Development and direct validation of models
- Multiple validations of existing prediction model(s)
 - To identify boundaries of model generalizability
 - To investigate differences in model performance across study populations
IPD – are we realistic?

- Researchers **protective** over their own data
- Worried about Data Protection Act (**ethics**) – however, no need to include patient ID numbers
- **Cost, time** – when does it become worthwhile?

To conduct better prognostic & diagnostic research we need:

- To be prepared to **collaborate** and share data to make IPD available – in paper, on Web, on request
- To be involved in **prospectively planned** pooled analyses
Reasons to be optimistic

• **IPD can be obtained**, although may be a long process
 – Meta-analyses have been facilitated when IPD was available, e.g. in determining a consistent cut-off level (*Sakamoto et al* 1996, *Look et al* 2003)

• A review identified **383 IPD meta-analyses** (1991-2009)
 – 48 IPD meta-analyses of prognostic factors
Reasons to be optimistic

Number of published IMPF articles over time; the spike in 2007 is due to eight articles from the IMPACT collaboration being published simultaneously.

IPD-MA: what aims can be addressed in prediction research?

1. **Evaluate the performance of existing model(s)**
 - Which model yields better predictions, under what circumstances?
 - What performance can we expect in a certain study population or setting?

2. **Adjusting an existing model to local settings**
 - Does the model require changes before implementation? (e.g. adjustment for disease prevalence)

3. **Developing a novel prediction model**
 - How can we develop and directly validate a new prediction model?
 - What is the added value of a specific predictor or (bio)marker across different study populations?
Example #1: external validation of an existing prediction model

Diagnosis of deep vein thrombosis (DVT)
- Blood clot that forms in a vein in the body (lower leg/thigh)
- If blood clot breaks off -> blood stream -> lungs -> blockage
- Pulmonary embolism, preventing oxygenation of blood
- Potentially causing death
Example #1: external validation of an existing prediction model

Prediction model for \textbf{ruling out DVT in primary care}

- Patient history
- Physical examination
- D-dimer testing (biomarker)

<table>
<thead>
<tr>
<th>Diagnostic variables</th>
<th>Odds ratio</th>
<th>Regression coefficient*</th>
<th>p-value</th>
<th>Points for the rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>1.80 (1.36 – 2.16)</td>
<td>0.59</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Oral contraceptive use</td>
<td>2.12 (1.32 – 3.35)</td>
<td>0.75</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td>Presence of malignancy</td>
<td>1.52 (1.05 – 2.44)</td>
<td>0.42</td>
<td>0.082</td>
<td>1</td>
</tr>
<tr>
<td>Recent surgery</td>
<td>1.46 (1.02 – 2.09)</td>
<td>0.38</td>
<td>0.044</td>
<td>1</td>
</tr>
<tr>
<td>Absence of leg trauma</td>
<td>1.82 (1.25 – 2.66)</td>
<td>0.60</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td>Vein distension</td>
<td>1.62 (1.19 – 2.20)</td>
<td>0.48</td>
<td>0.002</td>
<td>1</td>
</tr>
<tr>
<td>Calf difference ≥ 3 cm</td>
<td>3.10 (2.36 – 4.06)</td>
<td>1.13</td>
<td><0.001</td>
<td>2</td>
</tr>
<tr>
<td>D-dimer abnormal</td>
<td>20.3 (8.25 – 49.9)</td>
<td>3.01</td>
<td><0.001</td>
<td>6</td>
</tr>
<tr>
<td>Constant</td>
<td>-5.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

DVT = deep vein thrombosis; *=natural logarithm of the odds ratio; D-dimer abnormal for VIDAS ≥ 500 ng/ml and Tinaquant ≥ 400 ng/ml. Probability of DVT as estimated by the final model:

\[
\text{Probability} = \frac{1}{1 + \exp(-5.47 + 0.59 \times \text{male gender} + 0.75 \times \text{OC use} + 0.42 \times \text{presence of malignancy} + 0.38 \times \text{recent surgery} + 0.60 \times \text{absence of leg trauma} + 0.48 \times \text{vein distension} + 1.13 \times \text{calf difference} \geq 3 \text{cm} + 3.01 \times \text{abnormal D-dimer}).
\]
Example #1: external validation of an existing prediction model

IPD meta-analysis

3 studies available for external validation

- $N=791$ (primary care)
- $N=1028$ (primary care)
- $N=1756$ (secondary care)
Example #1: external validation of an existing prediction model

ROC curves
Example #1: external validation of an existing prediction model

Calibration plots

validation 1

validation 2

validation 3
Example #1: external validation of an existing prediction model

Interpretation of model validation results
Example #2: Systematic review and external validation of existing prediction models

Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study

Ali Abbasi PhD fellow¹²³, Linda M Peelen assistant professor³, Eva Corpeleijn assistant professor¹, Yvonne T van der Schouw professor of epidemiology of chronic diseases³, Ronald P Stolk professor of clinical epidemiology¹, Annemieke M W Spijkerman research associate⁴, Daphne L van der A research associate⁵, Karel G M Moons professor of clinical epidemiology³, Gerjan Navis professor of nephrology, internist-nephrologist², Stephan J L Bakker associate professor, internist-nephrologist/diabetologist², Joline W J Beulens assistant professor³
Example #2: Systematic review and external validation of existing prediction models

Type 2 Diabetes
• 366 million people worldwide (estimate of 2011)
• Increased morbidity and mortality
• Can be prevented or postponed by early interventions
• Need for risk prediction models!

Systematic review
• 34 basic models (using variables that can be assessed non-invasively) of which 12 presented as final model
• 42 extended models (including data on one to three conventional biomarkers such as glucose)
• Many models, few validations!
Example #2: Systematic review and external validation of existing prediction models

IPD meta-analysis

- EPIC-InterAct case-cohort
 - 27,779 participants of whom 12,403 with incident diabetes
 - 8 countries

- External validation of 12 literature models (with non-laboratory based variables)
 - Discrimination: c-statistic
 - Calibration: calibration plot, ratio expected versus observed
 - Other performance measures: Yates slope, Brier score
Example #2: Systematic review and external validation of existing prediction models

Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models

The Lancet, Diabetes & Endocrinology (2014)
Example #2: Systematic review and external validation of existing prediction models

Discrimination of model “DPoRT”
(overall and by country)

Prediction of incident type 2 diabetes at 10 years of follow-up
Example #2: Systematic review and external validation of existing prediction models

Discrimination of model “QDscore”
(overall and by country)

Prediction of incident type 2 diabetes at 10 years of follow-up
Example #3: Examining the added value of a specific marker

The clinical usefulness of carotid intima-media thickness measurements (CIMT) in cardiovascular risk prediction

Background: problems with Framingham risk score in predicting CVD risk
- No events despite high risk
- Many events in low risk categories

(Hester den Ruijter, Department of experimental cardiology, Julius Center for Health Sciences and Primary Care)
Example #3: Examining the added value of a specific marker

Improvement in CVD risk prediction: incorporation of non-invasive measurement of *atherosclerosis* by means of CIMT measurements

- Reflects long-term exposure to risk factor levels
- Predicts future cardiovascular events
- Modifiable by treatment
- Intermediate between risk factors and events
Example #3: Examining the added value of a specific marker

- B-mode ultrasound measurement of the Carotid Intima Media Thickness (CIMT)

https://www.youtube.com/watch?v=OM_X_Czujrs&feature=player_detailpage
Example #3: So what is the evidence?

Association CIMT-MI: evidence from aggregate data

<table>
<thead>
<tr>
<th>Study</th>
<th>HR</th>
<th>[95% CI]</th>
<th>n</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis Risk in Communities Study (ARIC)</td>
<td>1.22</td>
<td>[1.16-1.28]</td>
<td>13204</td>
<td>unpublished data</td>
</tr>
<tr>
<td>Cardiovascular Health Study (CHS)</td>
<td>1.33</td>
<td>[1.21-1.48]</td>
<td>4476</td>
<td>O’Leary 1999 (5)</td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>1.44</td>
<td>[1.28-1.62]</td>
<td>2267</td>
<td>Del Sol 2002 (7)</td>
</tr>
<tr>
<td>Malmö Diet and Cancer Study subcohort (MDCS)</td>
<td>1.36</td>
<td>[1.21-1.54]</td>
<td>5163</td>
<td>Rosvall 2005 (10)</td>
</tr>
<tr>
<td>Carotid Atherosclerosis Progression Study (CAPS)</td>
<td>1.18</td>
<td>[1.08-1.28]</td>
<td>5052</td>
<td>Lorenz 2006 (12)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.26</td>
<td>[1.21-1.30]</td>
<td>30162</td>
<td></td>
</tr>
</tbody>
</table>

I² for heterogeneity: 65.2%

Example #3: USE-IMT collaboration

- Ongoing individual participant data meta-analysis of general population
- Studies were invited to participate when they had data on Framingham risk score, CIMT measurements and follow-up to CVD
Example #3: models with and without CIMT

- Two Cox proportional hazards models with stroke and MI
 - FRS (refit age, gender, cholesterol, blood pressure, smoking, blood pressure medication)
 - FRS (refit age, gender, cholesterol, blood pressure, smoking, blood pressure medication) + CIMT

- Do these two models reclassify patients differently?

FRS = Framingham Risk Score
Example #3: Clinical Usefulness

Distribution of 45,828 individuals without and with events in USE-IMT across risk categories

<table>
<thead>
<tr>
<th></th>
<th>Framingham Risk With CIMT</th>
<th>Total without events, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5%</td>
<td>5%-20%</td>
</tr>
<tr>
<td>Without events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td><5%</td>
<td>20271</td>
<td>867</td>
</tr>
<tr>
<td>5%-20%</td>
<td>1115</td>
<td>17,280</td>
</tr>
<tr>
<td>>20%</td>
<td>315</td>
<td>1611</td>
</tr>
<tr>
<td>With events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td><5%</td>
<td>537</td>
<td>67</td>
</tr>
<tr>
<td>5%-20%</td>
<td>69</td>
<td>2,410</td>
</tr>
<tr>
<td>>20%</td>
<td>85</td>
<td>737</td>
</tr>
</tbody>
</table>
The **added value of common CIMT** in 10-year risk prediction of cardiovascular events, in addition to the Framingham risk score, **is small and unlikely to be of clinical importance**

Den Ruijter et al., JAMA 2012
IPD meta-analysis for developing and validating a prediction model

Potential advantages
• Address a wider range of study populations
• Increase variation in subject characteristics
• Increase sample size

However,
• Researchers often simply combine all IPD, and produce a prediction model averaged across all study populations
IPD meta-analysis for developing and validating a prediction model

Simply combining IPD

• Obfuscates the extent to which individual studies were comparable
• Can mask how the model performs in each study population separately
• May lead to prediction models with limited generalizability and poor performance when applied in new subjects
IPD meta-analysis for developing and validating a prediction model

A qualitative review was performed to identify...

• ... the current research standards and techniques

• ... the role of IPD meta-analysis methods toward development and validation

• ... the common challenges and methodological problems researchers face
IPD meta-analysis for developing and validating a prediction model

Ahmed et al. BMC Medical Research Methodology 2014, 14:3
http://www.biomedcentral.com/1471-2288/14/3

RESEARCH ARTICLE

Developing and validating risk prediction models in an individual participant data meta-analysis

Ikhlaaq Ahmed¹, Thomas PA Debray², Karel GM Moons² and Richard D Riley³*
IPD meta-analysis for developing and validating a prediction model

Systematic review: 15 relevant IPD reviews (1994-2008)

• **Obtaining IPD**
 – (Systematic) literature review (N=7)
 – Collaborative group of selected researchers (N=7)
 – Unclear (N=1)

• **Type of data**
 – Randomized controlled trials (N=7)
 • Data from all treatment groups (N=5)
 • Data from placebo group only (N=2)
 – Observational studies (N=4)
 – Mixture of RCT’s and observational studies (N=1)
IPD meta-analysis for developing and validating a prediction model
IPD meta-analysis for developing and validating a prediction model

Systematic review: 15 relevant IPD reviews (1994-2008)

- **Model development**
 - Pool all IPD and ignore clustering of participants (N=10)
 - Pool all IPD and account for clustering, e.g. using dummy variable for study (N=3)

- **Heterogeneity in predictor effects**
 - Not evaluated (N=12)

- **Strategy for inclusion of predictors**
 - P-value driven (N=9 out of 13)
 - Selection procedure (N=4)
IPD meta-analysis for developing and validating a prediction model

Systematic review: 15 relevant IPD reviews (1994-2008)

- **Evaluation of model performance**
 - **None** (N=4)
 - **Internal validation** (N=11): same data are used to develop and validate the model
 - **External validation** (): different datasets are used for development and validation
 - **Internal-external cross-validation** (N=2): rotating external validation by iteratively omitting studies during development
IPD meta-analysis for developing and validating a prediction model

Recommendations

• Allow for different baseline risks in each of the IPD studies
 – Account for differences in outcome prevalence (or incidence) across studies
 – Examine between-study heterogeneity in predictor effects and prioritize inclusion of (weakly) homogeneous predictors
 – Appropriate intercept for a new study can be selected using information on outcome prevalence (or incidence)

• Implement a framework that uses internal-external cross-validation
A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis

Thomas P. A. Debray, Karel G. M. Moons, Ikhlaaq Ahmed, Hendrik Koffijberg, and Richard David Riley
IPD meta-analysis for developing and validating a prediction model

Dealing with **heterogeneity** in an IPD-MA

- Due to differences in study design, inclusion and exclusion criteria, disease severity, interventions undergone, ...
- Differences in baseline risk
 - Outcome prevalence (diagnostic models): intercept term
 - Outcome incidence (prognostic models): baseline hazard
- Differences in predictor-outcome associations
 - Regression coefficients
IPD meta-analysis for developing and validating a prediction model

Dealing with heterogeneity in an IPD-MA

• Typically accounted for by random effects modeling (intervention research). However:
 – Model parameters take different values for each included study
 – Which parameters to use when validating/implementing the model in new individuals or study populations?
 – When do study populations differ too much to combine?

• Need for a framework that can identify the extent to which aggregation of IPD is justifiable, and provide the optimal approach to achieve this.
Step 1: model development

Different choices to combine IPD

- **Stacking**: ignore clustering of subjects within studies, merge all data into one big dataset

- **Random effects modeling** (of intercept term): account for differences in baseline risk across studies by assuming a certain distribution of intercept terms

- **Stratified modeling** (of intercept term): account for differences in baseline risk across studies, without assuming a certain distribution of intercept terms.
Step 2: choosing an appropriate model intercept when implementing the model to new individuals

- **Average intercept**: can directly be used in a new study population; dangerous when there is much heterogeneity in baseline risk across studies.

- **Intercept selection**: choose intercept term from study with most similar outcome prevalence.

- **Intercept estimation (option 1)**: directly estimate most appropriate intercept term for the new study population from **outcome prevalence**.

- **Intercept estimation (option 2)**: re-estimate the model intercept from **locally collected IPD**.
Step 3: model evaluation

Check whether

- Modeling of predictors is adequate (e.g. choice of predictors, nonlinear terms, interactions, ...)
- Intercept term is adequately modeled (e.g. random effects versus stratified intercept term)
- Strategy for choosing intercept term in new study population is adequate (e.g. average intercept versus intercept selection)
- Model performance is consistently well across studies
 - Discrimination
 - Calibration
Internal-external cross-validation

Procedure
1. Check whether baseline risk (intercept term) is heterogeneous across studies
2. Iteratively develop model using M-1 studies, and externally validate model in remaining study
3. Evaluate whether derived models have good performance in independent studies
4. Derive a single final model from all available IPD
Example #4: developing and directly validating a prediction model

- **Diagnosis of deep vein thrombosis (DVT)**
 - IPD-MA of 12 studies
 - 10,014 patients (1,897 with DVT)
 - Focus on 2 homogeneous predictors: sex & recent surgery

- **Comparison of 3 strategies**
 - **Stacking**, ignore clustering of subjects within studies
 - **Random effects modeling** on intercept term (use average intercept in new study)
 - **Stratified intercept terms** (select intercept term based on outcome prevalence)

- Evaluate discrimination and calibration
Example #4: developing and directly validating a prediction model

Model discrimination
Example #4: developing and directly validating a prediction model

Model calibration
Example #4: overall conclusions

Outcome prevalence = reliable proxy for selecting an appropriate intercept term...

- Leads to consistent performance across studies

... as long as predictor effects are homogenous

- Outcome prevalence no longer reliable proxy (affects *calibration-in-the-large*)
- Predictor effects no longer consistent across studies (affects *calibration slope*)
- Other predictors may, however, improve discrimination!!
 - Sex & surg: AUC varies between 0.55 to 0.65
 - malignancy, recent surgery, calf difference and D-dimer test: AUC varies between 0.73 to 0.92
Take home messages

IPD meta-analysis in prediction research

- Improving the performance of novel prediction models across different study populations
- Attain a better understanding of the generalizability of a prediction model
- Exploring heterogeneity in model performance and the added value of a novel (bio)marker

Unfortunately, most researchers analyze their IPD as if representing a **single dataset**!
Take home messages

Remaining challenges in IPD meta-analysis

• Synthesis strategies from intervention research cannot directly be applied in prediction research (due to focus on absolute risks)
• Adjustment to local circumstances often needed
 – One model fits all?
 – Methods for tailoring still underdeveloped

New methods are on their way!
Take home messages

Reasons to be optimistic

• Cochrane Prognosis Methods Group
 – Aims to facilitate evidence-based prognosis research
 – Improve design, quality & reporting of primary studies
 – Facilitate systematic reviews & meta-analysis in long-run
 – Bring together prognosis researchers, and guide Cochrane reviewers facing prognostic information
 – Develop handbook