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1 Introduction 
In this tutorial, we summarise and illustrate some of the user-written packages for conducting meta-
analysis of diagnostic test accuracy (DTA) studies in R. Furthermore, we provide instructions for 
carrying out the bivariate binomial method by fitting a generalized linear mixed model (GLMM) using 
the glmer function in the R package lme4.  Table 1 summarises the functionality of the available 
packages. In particular, it shows the models (bivariate model, HSROC model or both) the packages 
can fit, and whether or not they allow for meta-regression through the inclusion of covariates in the 
model.  
 
Table 1: Summary of user written packages for DTA meta-analysis in R 

Package 
(reference)a 

Model  Meta-regression Compatible with 
RevMan  

Other software 
requirements 

mada1 Bivariate normalb  Yes Yes None 
HSROC2 Bivariate and HSROC No No None 
bamdit3 Bivariate Bayesian No No JAGS 
CopulaREMADA4 Trivariatec   No No None 
mvmeta5 Bivariate normal  Yes Yes None  
lme4  
(glmer function 
in lme4 for 
fitting GLMMs in 
R)6  

Bivariate binomial  Yes Yes None 

JAGS = Just Another Gibbs Sampler. 
aThe packages implement the bivariate model with a normal or binomial within-study likelihood, or 
the HSROC model using a binomial likelihood. 
bIf there are no covariates in the model, mada also generates parameters for the HSROC curve  by 
exploiting the relationship between bivariate and HSROC models.7 
cThe trivariate model jointly synthesises sensitivity, specificity and prevalence of the target 
condition.  
 
In section 2 we introduce the example data used in this tutorial and describe how to load the data 
into R. In section 3 and section 4 we discuss the functionality and plotting capabilities of the HSROC 
and bamdit packages, respectively. In section 5 we briefly outline key features of other user written 
packages listed in Table 1. Section 6 provides a detailed tutorial for carrying out the bivariate 
binomial method by directly fitting a GLMM using the function glmer.  
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2 Data  

2.1 Introduction  
The example dataset used in this tutorial, schuetz.csv, is based on a published diagnostic test 
accuracy review by Schuetz et al.8 Schuetz and colleagues evaluated the diagnostic performance of 
multislice computed tomography (CT) and magnetic resonance imaging (MRI) for the diagnosis of 
coronary artery disease (CAD). Prospective studies that evaluated either CT or MRI (or both); used 
conventional coronary angiography (CAG) as the reference standard; and used the same threshold 
for clinically significant coronary artery stenosis (a diameter reduction of 50% or greater) were 
included in the review. A total of 103 studies provided a 2x2 table for one or both tests and were 
included in the meta-analysis: 84 studies evaluated only CT, 14 evaluated only MRI, and 5 studies 
evaluated both CT and MRI.  
 
2.2 Set working directory and read data into R  
Set your working directory to the appropriate drive where you saved the file schuetz.csv. This can be 
done via the File menu (see Figure 1). Select File -> Change dir… and then browse to find 
the correct folder. Alternatively, one can use the command  

 
setwd("C:/’insert address here‘") 
 

It is important to ensure that folders are separated by a / and not \. Once the directory has been 
set, to read the comma delimited (Excel.csv) file containing the data use   

 
(X = read.csv("schuetz.csv")) 

 
This assigns the data in ("schuetz.csv") to the object X (referred to as a data frame) in R’s memory, 
and simultaneously displays the data in the R console.  
 

 
Figure 1: Setting the working directory using the File menu 
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3 HSROC package 
First, if needed, install the HSROC package (you need to select an appropriate CRAN mirror, for 
example, this will typically be the geographically closest)  

 
install.packages("HSROC") 

 
Next, load the HSROC package to the current R workspace   
 

library(HSROC) 

 
HSROC is very particular about the form of the dataframe containing the test accuracy data; it 
cannot handle additional columns (e.g. those indicating the study ID).  
 

X.CT = X[X$Test=="CT",] 
X.MRI = X[X$Test=="MRI",] 
X.CT = X.CT[,3:6]   
X.MRI = X.MRI[,3:6]  

 
Let’s fit the HSROC model for the CT data. As we will see, it is convenient to include the data in a 
folder specific to the test. Thus, first create a new folder named ‘CT’ and set the working directory to 
this folder.  
 

setwd("C:/’insert address here’/HSROC/CT") 
 
hsroc.CT = HSROC(X.CT , iter.num=10000 )  
 
summ.CT = HSROCSummary(data = X.CT, burn_in=5000, Thin=2, print_plot=TRUE )  
 
summ.CT[[1]] 

 
The files generated by the Gibbs sampler process are all stored in the folder ‘CT’. Running the 
functions again for MRI without creating a new folder will overwrite this information. Thus, again 
create a new folder named ‘MRI’ and reassign the working directory.  
 

setwd("C:/’insert address here’/HSROC/MRI") 
 
hsroc.MRI = HSROC(X.MRI, iter.num=10000 )  

 
summ.MRI =HSROCSummary(data = X.MRI, burn_in=5000, Thin=2, print_plot=TRUE)  
 
summ.MRI[[1]]  

 
The output of summ.MRI and summ.CT is summarised in Table 2. The function HSROCSummary 
fits the HSROC model and returns the model parameters as well as density and trace plots for the 
HSROC parameters. The SROC curves are presented in Figure 1 below.  
 
It is important to note that HSROC fits the HSROC model using the probit link function and not the 
logit link function used in the HSROC model developed by Rutter and Gatsonis.9 As a result, the 
model parameters returned by HSROC are not compatible with Review Manager (RevMan) and 
will lead to erroneous SROC curves.  
 



4 
 

Table 2: Posterior median and upper and lower 95% highest posterior density credible 
interval for the model parameters 

MRI  CT 
Parameter Median HPD.low HPD.high 

 
Parameter Median HPD.low HPD.high 

THETA -0.509 -0.779 -0.199 
 

THETA -0.375 -0.562 -0.195 
LAMBDA 1.852 1.465 2.234 

 
LAMBDA 2.934 2.797 3.000 

beta 0.404 -0.107 0.750 
 

beta -0.023 -0.280 0.224 
sigma.alpha 0.462 0.092 0.867 

 
sigma.alpha 0.828 0.657 1.027 

sigma.theta 0.333 0.183 0.519 
 

sigma.theta 0.307 0.229 0.392 
S Overall 0.881 0.832 0.922 

 
S Overall 0.968 0.959 0.977 

C Overall 0.692 0.588 0.789 
 

C Overakk 0.858 0.834 0.880 
S1_new 0.918 0.717 0.950 

 
S1_new 0.964 0.804 1.000 

C1_new 0.662 0.348 0.000 
 

C1_new 0.855 0.583 0.000 

HPD = Highest posterior density 
 

 
Figure 2: Summary ROC curves for MRI (left) and CT (right) plotted using the HSROC 
package 
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4 Bamdit package 
First, if needed, install the bamdit package  
 

install.packages("bamdit") 

 
Next, load the bamdit package to the current R workspace   
 

library(bamdit) 

 
Similar to the HSROC package, bamdit requires the data in a very specific format—a data frame with 
4 columns containing the number of true positives, number of patients with disease, number of false 
positives, and number of patients without disease.  
 
Z = X[c("tp","fp")] 
 
Z$n1 = X$tp+X$fn  
Z$n0 = X$fp+X$tn  
 
Z = Z[c("tp", "n1" , "fp", "n0")]  
 

Again, we generate a separate data frame for each test.  
 
Z.CT  = Z[X$Test=="CT",] 
Z.MRI = Z[X$Test=="MRI",] 
 

The function metadiag fits the bivariate random effects model using JAGS (Just Another Gibbs 
Sampler) to perform MCMC (Markov Chain Monte Carlo) sampling.  
 
ma.MRI = metadiag(Z.MRI, re="normal", link="logit" )  
ma.CT = metadiag(Z.CT, re="normal", link="logit" )  
 

The number of true positives and false positives are modelled with two conditional binomial 
distributions.  The random effects (re) can be modelled using bivariate normal (“normal”) or scale 
mixtures (“sm”). The function also supports logit, complementary log-log, and probit link functions. 
 

Bayesian SROC curves can be plotted using bsroc.  
 
par(mfrow=c(2,1))  
 
bsroc(ma.MRI, data = Z.MRI )  
bsroc(ma.CT, data = Z.CT )  

 
The SROC curves for this data are presented in Figure 2. Using plotcont, it is possible to plot the 
observed data in ROC space, along with the posterior predictive contours.  
 
plotcont(ma.MRI, data = Z.MRI , parametric.smooth = TRUE )  
plotcont(ma.CT, data = Z.CT , parametric.smooth = TRUE )  
 

The function plotdata plots the true positive rates and false positive rates of each study included 
in the meta-analysis. These can be separated according to test type.  
 
testtype = as.numeric(X$Test)  
plotdata(Z, group = testtype )  
 

Further, the predictive posterior surfaces of two fitted models can be compared using  
 
plotcompare( ma.CT, ma.MRI, Z , level = 0.95, group = X$Test,  
             group.colors = c("blue", "red") , m1.name ="CT" , m2.name ="MRI" ) 
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This is demonstrated in Figure 3, which compares the predictive contours of the two models. Finally, 
posterior densities for sensitivity and specificity can be plotted using plotsesp.  
 
plotsesp(ma.CT) 
plotsesp(ma.MRI) 
 
 
 

 
Figure 3: Summary ROC curves (with confidence bounds) plotted using bamdit 
 

 
Figure 4: Comparison of predictive posterior contours using bamdit 
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5 Other user written packages 
The mada package implements the bivariate normal approach of Reitsma et al.10 The package can 
also fit bivariate meta-regression models. However, mada cannot fit the ‘exact’ bivariate binomial 
model of Chu and Cole.11  If there are no covariates in the model, mada also generates parameters 
for the HSROC curve by exploiting the relationship between bivariate and HSROC models.7   
 
The mvmeta package implements multivariate meta-analysis without the requirement of the 2x2 
data. By simply specifying the logit-sensitivity and specificity (and the corresponding covariance 
matrix) a bivariate random effects model can be fitted assuming normal within-study variability.  

The CopulaREMADA package fits copula mixed effects models for meta-analysis of test accuracy 
studies. In particular, it can be used to fit trivariate models which incorporate the prevalence of the 
target condition into the model.4  

 

6 Direct approach using glmer  

6.1 Introduction 
Here we describe the approach for fitting the bivariate model using the glmer function in the lme4 
package. An .R file, "Bivariate binomial meta-analysis of test accuracy studies in R.R", accompanies 
this tutorial. You can either run the commands from the file or you can create your own as you step 
through the tutorial.  
 
6.2 Meta-analysis using glmer 
First, install the lme4 package if required. 
 

install.packages("lme4") 

 
Load the package lme4  
 

library(lme4) 

 
In order to specify the GLMM, first, we need to set up the data. In particular, we add 5 new columns 
to the frame X. 

• n1 is the number with the disease 
• n0 is the number without the disease 
• true1 is the number of true positives 
• true0 is the number of true negatives 
• study is the unique identifier for each study 

 
X$n1 <- X$tp+X$fn  
X$n0 <- X$fp+X$tn  
X$true1 <- X$tp  
X$true0 <- X$tn  

 
X$study <- 1:108 

 
Next, reshape the data from wide to long format 
 

Y = reshape(X, direction = "long", varying = list( c("n1" , "n0") ,  
c( "true1","true0" ) ) , timevar = "sens" , times = c(1,0) ,  
v.names = c("n","true") ) 
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Y = Y[order(Y$id),] 
 

The first command assigns the long format data to the object Y. An indicator variable sens is 
defined to identify the sensitivity results. The data is then sorted by study id to cluster the two 
records per study together. Next add an additional indicator variable to identify specificity results.  
 

Y$spec<- 1-Y$sens 

 
Generate a separate data frame for each test type  

 
Y.CT  =  Y[Y$Test=="CT",] 
Y.MRI =  Y[Y$Test=="MRI",] 

 
It is now possible to perform a meta-analysis for CT.   
 

(MA_Y.CT = glmer( formula = cbind(  true , n - true ) ~ 0 + sens + spec + 
(0+sens + spec|study), data = Y.CT , family = binomial  ,  nAGQ = 1 , 
verbose = 2  )) 

 
More detail can be obtained by using the summary command  
 

(ma_Y.CT = summary(MA_Y.CT)) 

 
Now, let’s examine the model specification and output in more detail.  
 

• The variable true specifies the response while sens and spec are dummy variables. The 
fixed effect for logit sensitivity and logit specificity are the coefficients of sens and spec 
and the constant term is supressed by adding (0 + ...) to the model formula.   

 
• Adding (0 + sens + spec | study) to the model includes study-level random 

effects.  
 

• nAGQ defines the number of points per axis for evaluating the adaptive Gauss-Hermite 
approximation to the log-likelihood. 1 corresponds to the Laplace approximation. A value of 
zero uses a faster but less exact form of parameter estimation for GLMMs by optimizing the 
random effects and the fixed effect coefficients in the penalized iteratively reweighted least 
squares step. 

 
• family = binomial specifies the data are in binomial form.  

 
• verbose controls the level of reporting on the optimisation process. verbose = 0 

corresponds to no reporting, while verbose = 1 reduces the amount of output.  
 

• Specified in the form above, the between study covariance matrix is unstructured. In order 
to assume no correlation between sensitivity and specificity across studies, one must specify 
the random effects separately as follows: 
 

glmer( formula = cbind(  true , n - true ) ~ 0 + sens + spec + (0+sens|study) + 
(0+spec|study), data = Y.CT , family = binomial  ,  nAGQ = 1 , verbose = 2  ) 

 

The output generated by using the summary function is given in Figure 5 below. All of the important 
parameters for extraction to RevMan are highlighted.  
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Figure 5: Screenshot of glmer summary output highlighting the values required for input 
into RevMan  
 
Now, obtaining the sensitivity and specifity on the raw scale (along with their respective confidence 
intervals) isn’t totally straightforward, but it is possible. If you are content to do it manually and also 
do not require computation of additional summary measures such as diagnostic odds ratios (DORs) 
and likelihood ratios from the model parameters, then the rest of this section can be skipped.  
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For the full list of outputs from glmer use labels. 

 
labels( ma_Y.CT )  
 

Therefore, to extract the model coefficients use  
 

ma_Y.CT$coeff  
 
(lsens.CT = ma_Y.CT$coeff[1,1]) 
(lspec.CT = ma_Y.CT$coeff[2,1])  

 
(se.lsens.CT = ma_Y.CT$coeff[1,2]) 
(se.lspec.CT = ma_Y.CT$coeff[2,2])   

 
Then we can manually create 95% confidence intervals for logit sensitivity and logit specificity.  
 

(Sens.CT = c(lsens.CT, lsens.CT-qnorm(0.975)*se.lsens.CT, 
lsens.CT+qnorm(0.975)*se.lsens.CT )) 
(Spec.CT = c(lspec.CT, lspec.CT-qnorm(0.975)*se.lspec.CT, 
lspec.CT+qnorm(0.975)*se.lspec.CT ))  

 
Alternatively, generate the following dataframe. 
 

(logitCT = data.frame( estimate = c(lsens.CT , lspec.CT) ,  
 lci =  c(lsens.CT-qnorm(0.975)*se.lsens.CT , lspec.CT-
qnorm(0.975)*se.lspec.CT) ,  
 uci = c(lsens.CT+qnorm(0.975)*se.lsens.CT , 
lspec.CT+qnorm(0.975)*se.lspec.CT) , 
  row.names = c("lSens", "lSpec") ) )   

 
The sensitivity and specificty estimates can be transformed back to the raw scale using the built in 
function plogis. 
 

plogis( Sens.CT )  
plogis( Spec.CT )  

 
Similarly, we can calculate the diagnostic odds ratio (DOR) and likelihood ratios.  
 

(DOR = exp(lsens.CT+lspec.CT )) 
(LRp = plogis(lsens.CT)/(1-plogis(lspec.CT))) 
(LRm = ((1-plogis(lsens.CT))/plogis(lspec.CT)))   

 
Confidence intervals can be obtained using the delta method. This can be implemented in R using 
the function deltamethod in the package msm.  
 

install.packages("msm") 
 
library(msm) 
 
se.DOR = deltamethod (~ exp(x1+x2) , mean = c(lsens.CT,lspec.CT) , cov = 
ma_Y.CT$vcov ) 

  
se.LRp = deltamethod (~ (exp(x1)/(1+exp(x1)))/(1-(exp(x2)/(1+exp(x2)))) , 
mean = c(lsens.CT,lspec.CT) , cov = ma_Y.CT$vcov ) 
  
se.LRm = deltamethod (~ (1-(exp(x1)/(1+exp(x1))))/(exp(x2)/(1+exp(x2))) , 
mean = c(lsens.CT,lspec.CT) , cov = ma_Y.CT$vcov ) 

 
Then it is possible to construct a neat dataframe summarising the confidence intervals.   
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data.frame( estimate = c(DOR , LRp , LRm) ,  
 lci = c(DOR-qnorm(0.975)*se.DOR , LRp-qnorm(0.975)*se.LRp , LRm-
qnorm(0.975)*se.LRm) ,  
 uci = c(DOR+qnorm(0.975)*se.DOR , LRp+qnorm(0.975)*se.LRp , 
LRm+qnorm(0.975)*se.LRm), 
  row.names = c("DOR", "LR+" , "LR-" )  )  

 
 

6.3 Meta-regression using glmer  

6.3.1 Separate meta-analysis for each test 
The bivariate model is flexible and can be extended to investigate sources of heterogeneity or to 
compare the accuracy of two or more tests by adding a covariate to the model. This is relatively 
straightforward when building a regression model with glmer. Moreover, likelihood ratio tests can 
be used to compare models with or without a covariate term.  
 
While the assumption of equal variances for the random effects of the logit sensitivities and the logit 
specificities of different subgroups may be reasonable when investigating heterogeneity in the 
accuracy of a single test, this is not necessarily true when comparing the accuracy of multiple tests. 
Macaskill and colleagues provide further guidance in Chapter 10 of the Cochrane Handbook for 
Systematic Reviews of Diagnostic Test Accuracy.12 
 
Since it is possible for variances to differ between tests, we begin by meta-analysing each test 
separately to determine the variances of the random effects for each test.  This will elucidate 
whether the assumption of equal variances for the tests is likely to be reasonable in a model 
comparing the tests. 
 
6.3.2 Separate meta-analysis for each test 
 
Meta-analysis of CT 
 

glmer( formula = cbind(  true , n - true ) ~ 0 + sens + spec + (0+sens + 
spec|study), 
data = Y.CT , family = binomial  )   

 
Meta-analysis of MRI 
 

glmer( formula = cbind(  true , n - true ) ~ 0 + sens + spec + (0+sens + 
spec|study), 
data = Y.MRI , family = binomial  ) 

 
Examining the variances of the two tests it is apparent that there is a substantial difference in the 
between study variance of logit sensitivity of each test. Similarly, there is a large difference in the 
correlation between logit sensitivity and logit specificity for the two tests.  
 
6.3.3 Compare test accuracy  
 
It will be convenient for the interpretation of the model to introduce some new variables at this 
point.  
 

Y$CT  <- 2 - as.numeric(Y$Test)  
Y$MRI <- 1 - Y$CT  
 
Y$seCT  <- (Y$CT)*(Y$sens)  
Y$seMRI <- (Y$MRI)*(Y$sens)  
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Y$spCT  <- (Y$CT)*(Y$spec)  
Y$spMRI <- (Y$MRI)*(Y$spec) 

 
CT and MRI are dummy variables which identify the test type. Similarly, seCT, seMRI, spCT and 
spMRI are dummy variables that denote the respective interactions between sens/spec and test 
type.   
 
Fit the model without the covariate for test type  
 

(A = glmer( formula = cbind(  true , n - true ) ~ 0 + sens + spec + (0+sens 
+ spec|study), data = Y , family = binomial  ) ) 

 
Add covariate terms to the model for both logit sensitivity and logit specificity. This model 
assumes equal variances for both tests.  
 

(B = glmer( formula = cbind(  true , n - true ) ~ 0 + seCT + seMRI + spCT + 
spMRI + (0+sens + spec|study), data = Y , family = binomial  )) 

 

The models can be formally compared using a likelihood ratio test. The R package lmtest contains a 
function lrtest for this purpose.  
 

install.packages("lmtest") 

 
library(lmtest) 
 
lrtest(A,B) 

 
There is statistical evidence (chi-square = 27.9, 2 df, P<0.0001) that the expected sensitivity and/or 
specificity differs between CT and MRI. However, further analysis is required to determine if the 
difference is in sensitivity, specificity, or both.  
 
Is there a statistically significant difference in sensitivity between CT and MRI?  
 
Fit the model assuming sensitivity is the same for CT and MRI but allow specificity to vary with test 
type.  
 

(C = glmer( formula = cbind(  true , n - true ) ~ 0 + sens + spCT + spMRI +  
 (0+sens + spec|study), data = Y , family = binomial  )) 
 
lrtest(B,C)  
 

Here, there is statistical evidence (chi-square = 19.7, 1 df, P<0.0001) that the expected sensitivity 
differs between CT and MRI.   
 
Is there a statistically significant difference in specificity between CT and MRI?  
 
Fit the model assuming specificity is the same for CT and MRI but allow sensitivity to vary with test 
type.  
 

(D = glmer( formula = cbind(  true , n - true ) ~ 0 + seCT + seMRI + spec +  
 (0+sens + spec|study), data = Y , family = binomial  ))  
 
lrtest(B,D) 
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There is also statistical evidence (chi-square = 13.4, 1 df, P = 0.0002) that the expected specificity 
differs between CT and MRI.   
 
As previously mentioned, the assumption of equal variances may not be appropriate. There were 
differences between the variances of the random effects especially for the logit sensitivities as 
observed from the meta-analysis of each test. Since there are many studies for each test, it should 
be possible to fit a model with separate variances for the logits of each test.  
 

(E = glmer( formula = cbind(  true , n - true ) ~ 0 + seCT + seMRI + spCT + 
spMRI  +(0 +seMRI + spMRI |study) +(0 +seCT + spCT |study), data = Y , family 
= binomial  ))   
 
lrtest(B,E) 

 
Here, there is statistical evidence (chi-square = 8.54, 3 df, p=0.036) that the assumption of equal 
variances may not be reasonable.  
 
Finally, let’s perform a likelihood ratio test comparing the simplest model (A) with no covariate for 
test type and the most complex model (E) that includes a covariate for test type and allows for 
separate variances for each test.  
 

lrtest(A,E) 

 
There is statistical evidence (chi‐square = 36.44, 5 df, P<0.0001) that the expected sensitivity and/or 
specificity differs between CT and MRI. 
 
The between study covariance between logit sensitivity and specificity for each test can be obtained 
as shown below.  
 

(summary(E))$vcov 

 
From the above, the covariance between the estimated mean logit sensitivity and mean logit 
specificity of CT is 0.00355 and that of MRI is –0.00829.  
 
The parameter estimates for CT and MRI from model E can be entered into the corresponding 
multiple tests analysis in RevMan to produce a SROC plot with summary operating points for CT and 
MRI. Figure 6 shows how to extract the model estimates and input them into RevMan for this 
purpose, while Figure 7 shows the corresponding SROC plot.  
 
Table 3 presents the summary estimates from model E, model B (assuming equal variance), and from 
modelling sensitivity and specificity separately. From model E, the summary estimate obtained for 
sensitivity of CT was 97.2% (95% CI: 96.2% to 98.0%) compared to 87.7% (83.9% to 90.8%) for MRI, 
while CT had a summary specificity of 87.3% (84.4% to 89.8%) compared to 69.9% (59.1% to 78.8%) 
for MRI.   
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Figure 6: Screenshot of glmer summary output highlighting the values required for input 
into RevMan 
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Figure 7: SROC generated using RevMan (based on parameters obtained from model E)  

 
Table 3: Summary sensitivity and specificity (and 95% confidence intervals) of CT and MRI 
from different models  

Method 
CT MRI 

Sensitivity  
(95% CI) 

Specificity  
(95% CI) 

Sensitivity  
(95% CI) 

Specificity  
(95% CI) 

Separate meta-analysis for each 
test 97.2 (96.2, 98.0) 87.3 (84.4, 89.8) 87.7 (83.9, 90.8) 69.9 (59.2, 78.8) 

Test comparison with equal 
variances (model B) 97.0 (95.9, 97.8) 87.3 (84.4, 89.7) 89.0 (85.5, 93.2) 70.3 (59.6, 79.7) 

Test comparison allowing for 
different variances (model E)  97.2 (96.1, 98.0) 87.3 (84.4, 89.8) 87.7 (83.9, 90.8) 69.9 (59.1, 78.8) 

Summary sensitivities and specificities are presented as percentages.  
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