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1 Introduction to the meeting 

The Cochrane Comparing Multiple Interventions Methods group (CMIMG) received funding from the 

Cochrane Methodological Innovation project to produce guidance for Cochrane reviewers undertaking 

systematic reviews of multiple interventions. The work is divided into three streams.   

Stream 2 is concerned with statistical issues and presentation of results and aims to provide guidance about 

the statistical methods associated with Network Meta-Analysis (NMA).The present document provides 

background and discussion topics for the Stream 2 meeting on 16-17 July 2013.  

There is a vast literature on NMA methods and Stream 2 will produce guidance considering established and 

recently developed methods. We have collected the majority of the methodological papers on this topic and 

we have summarized the presented methodology (see Section 0). As NMA-related terminology varies 

considerably in the literature, CMIMG has put together a glossary of terms (see Section Error! Reference 

source not found.) that we use throughout this document.  

2 Objectives of the meeting and anticipated output 

It is important to highlight that the objectives of this stream do not include the production of new methods. 

We aim to establish the Cochrane NMA-related guidance drawing from the existing technical literature. At 

the end of the meeting we would hopefully: 

a) Decide which methods are to be recommended for Cochrane reviews 

The evaluation of the existing methodologies (to estimate effects, evaluate assumptions, present results etc.) 

should consider not only their statistical integrity but also (if not primarily!) their relevance for Cochrane 

reviews. Simple and efficient methods, easily understood by clinicians are to be preferred over sophisticated 

ones without however compromising on quality.   Methods should also be placed in the context of the 

existing statistical guidance as outlined in the Cochrane Handbook. The various NMA-related methods are 

presented in Sections 3, 4, and 5. 

b) Address some important uncertainties and reach consensus  

A few issues have been identified in the literature for which there is no wide agreement. These are outlined 

in Section 6.  

c) How to present data and results from NMA 

A collection of the various graphical options in the literature is presented in Section 7. RevMan could 

possibly accommodate some of the options used to present the data.  

d) Discuss what do we expect to see in the methods section of a protocol and Cochrane review 

There are a few published papers make suggestions about how an NMA should be presented. An initiative to 

extend the PRISMA statement to NMA is ongoing. More information is in Section  8.  
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3 Models for NMA and fitting options 

The various models can be seen from different angles. To our understanding, these different model 

presentations are equivalent and could be fit, in principal, in any Bayesian and frequentist software. 

However, ease of implementation and the availability of suitable software routines put practical constraints 

on the use of each method. For simplicity we focus on networks with two-arm studies only and we discuss 

implications for multi-arm studies. 

3.1 Notation & basic concepts of network meta-analysis models 

Let us consider a network with   studies and   treatments informing   direct pairwise comparisons.   

The aim of NMA is to estimate all possible relative treatment effects (such as OR, MD etc.) between pairs of 

the T treatments, e.g.     the relative effect of treatment   vs. treatment               . In reality we do 

not need to estimate all    , but only a few of them, called basic parameters. At the start of every network 

meta-analysis we need to choose a set of basic parameters                representing the summary 

treatment effects of     independent treatment comparisons. An easy way to define the basic parameters 

is to choose one of the   interventions as the reference (denoted with  ) and each    would represent the 

comparison of treatment   vs.            with     , hence       . NMA will estimate all     and 

then, the network summary effects of all other (functional) comparisons can be derived using the 

consistency equations 

                   (1) 

We can choose any set of basic contrasts with the only constraint that all the competing treatments in the 

network should be included in at least one basic contrast. 

Each study             reports at least one treatment effect      that corresponds to the comparison of 

treatments k and c. In case that a network includes only two-arm trials (or all trials are analyzed as two-arm 

studies) we suppress the subscript „  ‟ and we denote each observed effect size as    and its variance   
 .  

We also consider that studies estimate the underlying „true‟ treatment effects with random errors   , which 

are assumed normally distributed          
  .  We assume that there is heterogeneity in each pairwise 

comparison which is presented with the variance    
 . We can assume a common heterogeneity for all the 

comparisons in the network, for which we suppress the subscript „  ‟ and we write   .  

In all meta-regression models the covariates representing effect modifiers are denoted with  , while a 

covariate   (present in some of the models that follow) represents a dummy variable corresponding to a 

basic comparison. 

When we need to distinguish between direct and indirect estimates we use the superscripts „   ‟, „   ‟ 

respectively. We finally denote with   the difference between direct and indirect estimates in a specific loop 

(or between designs), which is often called inconsistency factor. 
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Summary of notation 

Description Symbol Description Symbol 

index for studies   reference treatment in the network   

total number of studies   
network summary effects for the 

functional contrasts 
    

total number of treatments   
direct summary estimates for a specific 

comparison 
   
    

number of (direct) comparisons with 

available data 
  

indirect summary estimates for a 

specific comparison 
   
    

index for basic contrasts   
variance of the summary network 

treatment effects (of    ) 
    

index for any comparison in the 

network 
   

between-study variance (heterogeneity) 

for a specific comparison. This is the 

variance of      or     . 

   
  

observed effect size in a study for a 

specific comparison (in a study in 

networks with only two-arm trials) 

     

     

common between-study variance 

(heterogeneity) for all comparisons.  
   

random term in a study  
              

          

variance of the observed effect size in 

a study for a specific comparison (in a 

study in networks with only two-arm 

trials) 

    
  

   
   

number of independent loops in the 

network 
  

inconsistency factor for a specific loop      

underlying treatment effect in a study 

for a specific comparison 

     

(    

covariate denoting a basic contrast 

(takes values 0,1,-1) 
   

random error in a study     
covariate corresponding to an effect 

modifier 
  

network summary effects for the basic 

contrasts 
   

network estimates adjusted for the 

effects of covariates 
   
   

 

 

3.2 Network meta-analysis as a hierarchical model 

Hierarchical models for NMA offer increased flexibility in modeling the underlying assumptions and are 

easy to extend (see section 5) but they are also more difficult to fit using frequentist software.  

We assume a normal distribution for the contrast-based study-specific outcome data  

          
   

The underlying study-specific treatment effects for each comparison are assumed either fixed and equal to 

the common summary effect,       , or random, coming from a common distribution (usually a normal 

distribution), hence 

            
      (2) 

or                  

with            
        (3) 

Then, the consistency equations (1) link the summary mean effects     to the     basic parameters   . In 

the presence of multi-arm studies multivariate distributions can be used in the likelihood of (2) or (3).  
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An advantage of hierarchical models for NMA is that they easily enable modeling separately the outcome in 

in each study arm. Thus, they can incorporate several assumptions for the baseline response if needed [1].  

Implementation: This model has been routinely fitted in a Bayesian framework using WinBUGS or 

OpenBUGS and codes for any type of data are readily available [2,3]. The new software GeMTC also uses 

this model. Recently, it has been implemented in SAS using the genmod procedure for fixed effect and the 

glimmix procedure for random effects model and codes have been provided for dichotomous data [4-6]. In a 

hierarchical model it is easy to account for the correlation in the observed and underlying effect sizes 

induced by multi-arm trials via multivariate (instead of univariate) normal distributions and to use the 

appropriate likelihood of the data (e.g. binomial for dichotomous data).  

3.3 Network meta-analysis as a meta-regression model 

This approach, presented by Lumley [7], treats the different treatment comparisons as covariates in a meta-

regression model. The model without an intercept is easier to understand as the estimated regression 

coefficients are directly interpreted as the NMA summary effects for comparisons representing the basic 

contrasts. The model for a network with   treatments and two-arm studies is 

                               

The covariates     can take the values -1, 0 or 1. More specifically, if study   compares treatments A and  

           then       and all other covariates are set equal to 0. For studies that do not include 

treatment A we rely on the consistency equations in (1). Thus, if study   compares treatment   to  , we 

would have      ,        and all other covariates equal 0. The values of the   covariates for all   

studies in the network form what we call the design matrix  , which is a matrix with   rows and     

columns. 

Under the consistency assumption we can derive the summary treatment effects for all other non-basic 

(functional) contrasts using again the equation (1). For multi-arm studies, estimates for pairwise comparison 

are included in the model and hence the components of         that refer to the same study are correlated.  

Implementation: The model can be fitted in any software able to perform meta-regression (e.g. STATA) but 

it requires the construction of the design matrix  . The main drawback of the implementation of this model 

in frequentist software is that it does not easily account for the inherent correlation in multi-arm trials (i.e. it 

is not easy to impose the correct multivariate form on the distributions of       ). Also, this approach is 

usually implemented after transforming the study data to obtain effect sizes that are assumed to be normally 

distributed, i.e. the exact likelihood for the data is not often employed.  
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3.4 Network meta-analysis as a multivariate meta-analysis model 

This approach, first described by White et al. [8], treats the different treatment comparisons as different 

outcomes. The      basic parameters    represent the “outcomes” (comparisons)   , a subset of which is 

presented in every study. In case there are studies not including the reference treatment  , data augmentation 

techniques can be used to „impute‟ an   arm with minimal information. This reflects the consistency 

assumption which implies that the missing arm is missing at random and all comparisons in the networks 

can be expressed via the basic contrasts. Then, each study reports on one or more outcomes           and 

the model can be written as a multivariate meta-analysis model:  

                                                      

As in any multivariate meta-analysis model it is not necessary to have all „outcomes‟ (basic contrasts) 

reported in all studies.  

For trials comparing treatment   to   that do not involve  , data is augmented so that the study becomes a 

three-arm study and hence  multivariate normal distributions on               and               are 

employed to incorporate the covariances between the different outcomes within each study. 

Implementation: This model can be fitted in STATA using the mvmeta command or in WinBUGS. The main 

disadvantage of this approach, when is fitted in STATA, is that it does not use the exact likelihood of the 

data (e.g. binomial, poisson, etc.). The R function mvmeta and the SAS procedure proc mixed can also be 

used with some caution (the between studies variance-covariance matrix is only unrestricted, see later 

considerations about heterogeneity).  

3.5 Network meta-analysis as a linear model using a two-stage approach 

Lu et al. [9] suggested that network meta-analysis can be performed as a linear model using a two-stage 

approach. According to this approach, at the first stage we use pairwise meta-analysis to derive the direct 

pooled estimates for all comparisons with available data and at the second stage we perform meta-regression 

on the direct pooled estimates to derive the network estimates assuming consistency via the design matrix. 

The approach is described below for a network including only two-arm trials. 

Let us consider that each comparison    with available data in the network includes     number of studies. 

At the first stage we perform   pairwise meta-analyses for each direct comparison to derive the direct 

pooled pairwise treatment effects. Hence, at the end of the first stage we have derived for each comparison 

 ̂  
    and its variance  ̂  

   . To account for the between-study variance within each comparison we can use a 

random effects meta-analysis. 

The pairwise direct estimates are then used as „data‟ in a meta-regression model at the second stage of the 

analysis, which is similar to the model described in the Section 3.3: 
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 ̂  
                           

  

with the only difference that here the data on the left hand side of the equation are not the observed 

treatment effects in the individual studies but the direct summary effects. Consequently, the random errors 

   
  relate to  ̂  

   . The covariates    are the entries of the design matrix and represent the linear relationships 

between the available   direct comparisons and the basic contrasts based on the consistency equations (1).  

The idea can be employed for datasets with multi-arm studies as well; in that case we would pool separately 

the    and the     studies to derive two different direct    estimates. In that way the effect sizes in multi-

arm studies are meta-analysed simultaneously in a model that incorporates their covariances. Then, the 

direct summary effects from all studies (two- and multi-arm) are pooled at the second stage to derive the 

network summary estimates accounting again for the correlated estimates. For more details on this approach 

see [9,10]. The two-stage approach is easily associated with the estimation of the  -statistics to test the 

presence of inconsistency and heterogeneity in NMA (see section 4.8).  

In the absence of multi-arm studies this approach can be performed in any software that performs meta-

analysis and meta-regression. For a network with multi-arm studies and R routine can be used (which can be 

found at http://www.unimedizin-

mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R) or by using twice the mvmeta 

in STATA.  

3.6 Considerations for heterogeneity 

Several assumptions for the comparison-specific heterogeneities    
  can be employed. We review these 

below. In general, stronger assumptions about similarity of heterogeneity parameters make estimation more 

efficient; in most networks we have only a few studies per comparison so comparison-specific heterogeneity 

parameters are not estimated well.  

We often assume that all pairwise comparisons share the same heterogeneity parameter, as was first 

proposed by Higgins et al. [11], hence    
     for any treatment comparison   vs.  . The advantage of this 

approach is that we decrease the number of parameters to be estimated and hence we increase precision in 

the estimation of heterogeneity (and the treatment effects). However, some investigators claim that this 

might be a strong assumption.  This assumption also implies that the correlation between all pairs of 

comparisons is 0.5. This has important implications for the structure of the between-studies variance-

covariance matrix of   . Available software to fit this model: WinBUGS, STATA (metareg and mvmeta), R 

(any meta-regression routine), SAS and GeMTC but only WinBUGS, STATA, SAS and GeMTC account 

properly for the multi-arm structure in the between-studies variance-covariance matrix.  

http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R
http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R
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We can allow for different and completely independent comparison-specific heterogeneity parameters 

putting no structural restrictions on the variance-covariance matrix of the random effects     
     

   . In the 

presence of comparisons with very few studies, though, this approach might not be efficient leading to very 

imprecise heterogeneity estimates. Moreover, it has been suggested that the consistency equations impose 

restrictions to the heterogeneities, so that they cannot be completely independent [12]. Available software to 

fit this model: WinBUGS and STATA (mvmeta). However, note that STATA can incorporate this model 

only in networks with available data for all possible pairwise comparisons in the network. 

Lu & Ades [12] suggested that the assumption of consistency restricts the heterogeneity parameters for 

different comparisons. More specifically, the heterogeneity for a comparison    is bounded by the 

heterogeneities of the basic parameters 

    
     

      
      

     
   

Accounting for these constraints requires further re-parameterization of the between studies variance-

covariance matrix, which makes the approach rather cumbersome.  This model can be incorporated only in 

the hierarchical model approach (section 3.2) and fitted in WinBUGS.  

3.7 Summary of the methods  

 

Software available 

Assumptions about 

heterogeneity that that can 

be accommodated  (by 

software) 

Possibility to use 

the exact 

likelihood (by 

software) 

Method to 

estimate 

heterogeneity 

Assumption of 

consistency… 

H
ie

ra
rc

h
ic

a
l 

m
o

d
el

  

WinBUGS or 

OpenBUGS, GeMTC, 

SAS (proc genmod & 

proc glimmix) 

WinBUGS or OpenBUGS: 

any assumption 

GeMTC, SAS: only common 

heterogeneity for all 

comparisons 

All software 

options 

MCMC, ML links the comparison-

specific summary 

effects and puts 

constrains into their 

estimation 

M
et

a
-r

e
g

re
ss

io
n

  

WinBUGS or 

OpenBUGS, STATA 

(metareg, without 

multi-arm studies), R 

(rma from  metaphor, 

without multi-arm 

studies), SAS (proc 

mixed) 

WinBUGS or OpenBUGS: 

any assumption 

STATA, R, SAS: only 

common heterogeneity for all 

comparisons 

Only WinBUGS 

or OpenBUGS  

MCMC, REML, 

ML, DL, Hunter-

Schmidt, Hedges, 

Sidik-Jonkman, 

Empirical Bayes 

 

is used to derive the 

design matrix 
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M
u

lt
iv

a
ri

a
te

 m
et

a
-a

n
a

ly
si

s 
WinBUGS or 

OpenBUGS and  

STATA (mvmeta), R 

(mvmeta), 

SAS (proc mixed) 

WinBUGS or OpenBUGS: 

any assumption 

STATA: common or different 

heterogeneities across 

comparisons 

R: Only different 

heterogeneities 

SAS: only common 

heterogeneity for all 

comparisons 

Only in 

WinBUGS or 

OpenBUGS 

MCMC, REML, 

ML,  

is employed to impute 

the „missing‟ reference 

arm in studies 

T
w

o
-s

ta
g

e 
a

p
p

ro
a

ch
 

WinBUGS or 

OpenBUGS, STATA 

(metareg or mvmeta), 

SAS (proc mixed), 

self-programmed 

available routine in R 

WinBUGS or OpenBUGS: 

any assumption 

STATA, R, SAS: only 

common heterogeneity for all 

comparisons 

only WinBUGS 

or OpenBUGS  

MCMC, REML, 

ML, DL, Hunter-

Schmidt, Hedges, 

Sidik-Jonkman, 

Empirical Bayes 

but in the R routine 

possibly only DL 

 

is used to derive the 

design matrix at the 

second stage of the 

analysis 
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4 Methods to evaluate statistically the consistency in a network 

Some of the methods described below are related or even identical under circumstances (e.g. the Lu&Ades 

model with the design-by-treatment model or the Q test for heterogeneity and the X
2
 test in the design-by-

treatment model). Note also that little is known about the power of the tests for inconsistency.  

4.1 Loop-specific approach 

This is perhaps the simplest approach to estimate inconsistency in a closed loop. For example, in the 

triangular loop    , that would be  ̂      ̂  
     ̂  

     with variance      ̂      ̂  
     ̂  

    where 

 ̂  
     ̂  

     ̂  
   .  Then, to infer about the statistical significance of the  ̂   , we can use a  -test. The 

method can be implemented in any software and there are readily available routines in R and STATA (see 

http://www.mtm.uoi.gr) that identify all triangular and quadratic (non-overlapping) closed loops of a 

network and estimate the  s and their variances. 

The main drawbacks of the method is that indirect evidence is defined as the evidence in the loop rather than 

this coming from the entire network and that provides multiple correlated tests. Also, the correlation in loops 

including multi-arm trials is not properly accounted for. However, such correlation can be minimized by 

including in the estimations only two of the three available comparisons in a loop from multi-arm studies. 

Finally, the method can point into problematic loops but cannot infer about consistency in the entire 

network.  

4.2 Composite test for inconsistency 

The composite test for inconsistency, suggested by Caldwell et al. [13], is similar to the previous approach 

but considers that differences can be present also between the various indirect estimates derived from all 

possible independent loops in a network. The method estimates for a specific comparison    the inverse 

variance weighted average  ̂   of the direct summary effect  ̂  
    and all independent (from non-overlapping 

  available loops in the network) summary indirect estimates  ̂  
        ̂  

    : 

 ̂   

 

 ̂  
    ̂  

    ∑
 

 ̂  
    

 
    ̂  

    

 

 ̂  
    ∑

 

 ̂  

    

 
   

 

Then the approximate   -statistic     
 

 ̂  
   ( ̂  

     ̂  )
 
 ∑

 

 ̂
  

    
( ̂  

      ̂  )
 

 
    follows a   

  

distribution under the null hypothesis of consistency between all independent estimates of the pairwise 

comparison. Using a   -test we can infer about the statistical significance of inconsistency.  

http://www.mtm.uoi.gr/
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The method can be implemented in any software; however there are no readily available routines. This 

approach also fails to account for the correlation between the different estimates in the presence of multi-

arm trials and can be applied as an omnibus test only for a collection of independent loops sharing a 

common comparison; that is in special cases of networks.  

4.3 Node-splitting approach 

The „node-splitting‟ approach, suggested by Dias et al. [14], compares direct and indirect evidence, the latter 

coming from the entire network. The method excludes one direct comparison at a time and estimates the 

indirect treatment effect for the excluded comparison using standard NMA methods.  

An equivalent approach is the „back-calculation‟ method [14]. This approach estimates the direct and 

network treatment effect estimates using the complete dataset. Then considering that the network estimates 

are a weighted average of the direct and all indirect estimates extracts the indirect estimates which are 

estimated as 

 ̂  
    (

 ̂  

 ̂  
 

 ̂  
   

 ̂  
   )  ̂  

       and    
 

 ̂  
    

 

 ̂  
 

 

 ̂  
    

Then we obtain the difference between the direct and indirect estimates ( ) and using a  -test we can infer 

about the statistical significance of inconsistency (or we can compare the posterior distributions of the direct 

and indirect effect If the method is implemented in a Bayesian setting).  

The methods can be fitted in WinBUGS (code can be found online from Bristol University) and the „node-

splitting‟ approach has been implemented also in the GeMTC software. 

As with the two previous approaches, the proper modeling of multi-arm trials is an unsolved issue. The 

methods can point out into comparisons that are associated with inconsistency but do not infer about the 

entire network.  

4.4 Lu & Ades model 

Lu & Ades [15] suggested a NMA model that accounts for the possible inconsistency by „relaxing‟ the 

consistency equations. This approach adds an extra term in the usual consistency equations to reflect the 

possible disagreement between the parameters of the estimated summary effects     in a loop. For example, 

for the     the consistency equation would be: 

                 

The parameters      can be assumed independent across loops. To increase power they can also be assumed 

exchangeable following a normal distribution              with the variance    being called the 

„inconsistency variance‟. The rest of the model is the same as in standard NMA. A large   suggests 

important inconsistency in the respective loop and comparing    with    can help inference about the 

„extra‟ variability due to inconsistency. 
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The main drawback of this approach is that the results are sensitive to the parameterization of multi-arm 

trials. The model can be fit in STATA and WinBUGS and has been implemented also in the GeMTC 

software. In STATA and WinBUGS the addition of the inconsistency factors to the consistency equations 

should be made by hand, whereas in GeMTC is done automatically. 

4.5 Design-by-treatment interaction model 

An extension of this model is the design-by-treatment interaction model, suggested by Higgins et al. [16] 

This approach accounts also for a different source of inconsistency (known as design inconsistency) that can 

arise between  estimates of the same comparison coming from studies with different designs (e.g. two-arm 

vs. three-arm trials).  The previous model (by Lu & Ades) is a special case of the design-by-treatment model 

and the two models are identical for networks that do not have multi-arm studies. Inference about the 

presence of inconsistency in the entire network is made using a    test to assess jointly all   parameters. 

The w factors can be assumed fixed and independent or random as above and drown from          The 

random inconsistency model has an elegant analogy to the random-effects model.  

This model can be fitted in STATA (fixed w) or WinBUGS (both fixed and random w).  

In the presence of multi-arm trials, parameterization for the inconsistency factors can be difficult particularly 

for complex and large networks, as discrimination between loop and design inconsistency is not always 

straightforward. However, a STATA routine is being prepared to automate the process.  

The advantage of the approach is that the different possible parameterizations of multi-arm studies do not 

affect the inference about the presence of inconsistency in the entire network (based on the   -test).   

4.6 Comparison of model fit and parsimony between consistency and inconsistency model 

This approach is specific to models fitted within a Bayesian framework and employs the measures of model 

fit and parsimony (e.g. DIC, residual deviance) to check the plausibility of the consistency assumption. We 

first apply both the consistency and the inconsistency models (the model in which the consistency equations 

have been omitted). Then, we compare the model fit and parsimony between the two models and if the 

inconsistency model appears to fit the data better and be more parsimonious this is an indication that the 

consistency assumption might not hold.  

Note that this is a tool to infer only about the inconsistency in the entire network and not in each specific 

loop.  
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4.7 Net-Heat matrix 

Krahn et al. [10] extended the two-stage NMA model associated with the second stage of the analysis to 

evaluate inconsistency. This extended model includes an additional parameter per comparison that 

represents the difference between direct and indirect estimates for that comparison. This model can be seen 

as a version of the design-by treatment model. Krahn et al suggested comparing the residual inconsistency of 

the extended model with the residual inconsistency of the initial (non-extended model) to reveal whether a 

specific comparison is a „hot-spot‟ of inconsistency.   

 

4.8  -statistics in NMA 

The two-stage approach to fit NMA enables the derivation of  -statistics for heterogeneity and 

inconsistency analogous to the  -statistic for heterogeneity in simple meta-analysis. More specifically, at 

the first stage of the analysis we estimate for each comparison    the usual  -statistic from all     studies 

that report it  

    ∑
 

  
 (    ̂  

   )
 

   

   

       
   

which represents the distances between the observations in studies    and the pooled direct estimates  ̂  
    

for every direct comparison   . According to Krahn et al. [10] the sum of all the within-comparisons    s is 

the   for heterogeneity in a network meta-analysis        and follows a    distribution with     degrees 

of freedom. 

A similar  -statistic can be estimated for the meta-regression model at the second stage of the analysis as 

     [( ̂ 
     ̂ 

   )    ̂   ̂  ](
   ̂ 

     
   
     ̂ 

   
)*(

 ̂ 
   

 
 ̂ 
   

)  (
 ̂ 

 
 ̂ 

)+ 

and represents the distances between the direct summary estimates  ̂  
    and the network summary estimates 

 ̂   for each comparison   . Under the null hypothesis of consistency the      follows a    distribution 

with       degrees of freedom.  

Krahn et al. [10] further suggested that the total  -statistic for both stages of the analysis is the sum of the 

 -statisics for heterogeneity and inconsistency                  and under the null hypothesis of 

consistency and homogeneity in the network follows a    distribution with     degrees of freedom. 

Note that all the above  -statistics have been extended to account for the inclusion of multi-arm trials. For 

details on these extensions see [9,10]. These  -statistics can be estimated using a routine in R available from 

http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R 

http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R
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4.9    measure for NMA 

Jackson et al. [17] suggest in their paper (under revision) the use of the    measure for heterogeneity and 

inconsistency in NMA using a definition previously suggested for multivariate meta-analysis [18].  

4.10 Multidimensional scaling 

Chung & Lumley [19] proposed a graphical method and the use of multidimensional scaling for the 

evaluation  of inconsistency. Their approach considers that the direct pairwise summary effects are the 

„observed dissimilarities‟ between the treatments and uses them to construct a dissimilarity matrix. Then, it 

employs weighted multidimensional scaling techniques to estimate the „fitted dissimilarities‟. Comparing the 

observed and the fitted dissimilarities we can infer about the presence of inconsistency; discrepancies imply 

possible important inconsistency.  

4.11 Comparison of methods 

 Identifies spots  

of inconsistency  

Can infer about  

the entire network 

Software Sensitive to 

parameterization 

of 3-arm studies  

Loop-specific 

approach 

Yes No WinBUGS or OpenBUGS, SAS, 

readily available routines in  

STATA and R 

Yes 

Composite test Yes No WinBUGS or OpenBUGS, 

STATA, SAS, R (no routines 

readily available) 

Yes 

Node-splitting & 

back-calculation 

Yes No available code in WinBUGS or 

OpenBUGS, but also STATA, 

SAS, R, GeMTC (node-splitting) 

Yes 

Lu & Ades model Yes Yes WinBUGS or OpenBUGS, 

STATA, GeMTC, possibly SAS 

Yes 

Design-by-

treatment 

Yes Yes WinBUGS or OpenBUGS and 

STATA 

No 

Comparison of 

model fit and 

parsimony 

No Yes WinBUGS or OpenBUGS, 

STATA, SAS, R 

Yes 

Net-heat matrix Yes No Could be done in WinBUGS or 

OpenBUGS, STATA, SAS, but 

needs self-programming, there is 

an available routine in R 

No 

Q No Yes WinBUGS or OpenBUGS, 

STATA, SAS but needs self-

programming, available routine 

No 
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in R  

I2 No Yes WinBUGS or OpenBUGS, 

STATA, R, SAS but needs self-

programming  

No 

Multidimensional 

scaling 

Yes No STATA, R, SAS but needs self-

programming 

No 

 

5 Network meta-regression 

Extensions of NMA models to account for important effect modifiers have been presented in the literature.   

The meta-regression model used to perform NMA can be extended to incorporate additional covariates (on 

the top of the basic contrasts) that might impact on the treatment effect estimates. Such an extended model 

would be 

     
   

            
   

                            

where the covariates           are the possible effect modifiers and the coefficients         show how 

much these covariates differentiate the estimated treatment effects. In this model the estimated effects 

 ̂ 
   

    ̂     
   

 are „adjusted‟ for the effect of the   covariates. 

Similarly, the hierarchical NMA model can be extended to account for the impact of possible effect 

modifiers and can be fitted in WinBUGS and possibly in SAS using the glimmix procedure but no codes 

have been provided in SAS. Covariates can be included also when NMA is fitted as a multivariate meta-

analysis model and can be fitted in STATA using the mvmeta command and in WinBUGS.  

Note that the model above assumes that the effect modifiers have the same effect on all comparisons. We 

can assume comparison-specific coefficients or consistent coefficients within comparisons (see Cooper et al. 

[20] for a detailed description) . Note however that only models fitted within WinBUGS offer maximum 

flexibility regarding assumptions for the coefficients.  

6 Challenging issues in network meta-analysis 

6.1 Choice of the appropriate effect measure 

The measure of analysis is not necessarily the same as the measure of presentation of results from meta-

analysis. The different effect measures have different properties and their interpretability varies e.g. risk 

difference is well understood but has poor mathematical properties. Therefore, reviewers are encouraged to 

undertake the analysis using an appropriate measure and then present the result transformed into a scale that 

is easy to understand.  
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 A recent publication by Norton et al. [21] shows that the three different effect measures, commonly used for 

dichotomous data (OR, RR, RD), can result in different rankings for the treatments in an indirect 

comparison if the baseline risk is not constant across studies. If there is no particular reason to choose OR, 

the authors recommend to use either the RR or the RD and then to perform a sensitivity analysis. However, 

they don‟t give a clear justification for this preference. 

In their response to this paper, van Valkenhoef and Ades [22] highlight the fact that the phenomenon of rank 

reversal is a consequence of the underlying assumptions in any indirect comparison. The exchangeability 

assumption and the additivity of treatment effects cannot hold simultaneously for all three measures. Thus, 

the choice of the analysis measure should be based not on convenience and interpretation criteria but on the 

appropriateness of each measure for the respective data. Extreme variation in the baseline risk across studies 

that would lead to the rank reversal phenomenon is a sign that the exchangeability assumption might not be 

plausible. 

The ideas in van Valkenhoef and Ades were first described in Caldwell et al. [23] where it was shown  that 

the choice of scale can impact strongly on the results and should be based on scientific grounds such as 

heterogeneity and goodness-of-fit measures (e.g. DIC, residual diagnostics, etc.). They also suggest that OR 

occasionally gives larger treatment effects and can be misinterpreted while for time-to-event data HR should 

be given greater consideration. Finally, they note that the scale of analysis is a different issue than the scale 

of reporting.  

An empirical study by Veroniki et al. [24] showed that there are a priori no important differences between 

the different measures in terms of inconsistency when estimated using the loop-based approach or the 

design-by-treatment model.  

Earlier studies [25,26] had suggested that OR might be preferable for network meta-analysis compared to 

RR. It is known that RRb (beneficial) and RRh (harmful) can result in different effect estimates in 

magnitude and precision but consistent in direction. It was shown that in indirect comparisons RRb and RRh 

can also give relative treatment effects with different direction (favoring different treatments). 

6.2 Stability of ranking probabilities 

There is agreement that the ranking measures are useful but they should be presented only in the context of 

the estimated effect sizes. It has been previously suggested that ranking should be based on cumulative 

probabilities rather than the „probability of being the best‟ as the latter ignores uncertainty in ranking [27].  

Mills et al. [28] explored the effect of excluding treatments in a collection of 18 network meta-analyses and 

found that the effect sizes and ranking are conditional on the number of treatments and trials of the network.  
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Jonas et al. [29] also used two different networks and compared the ranking probabilities (derived from 

Bayesian NMA) in the complete datasets and after excluding parts of the datasets to create sub-networks 

with specific patterns (e.g. star network, ladder, etc.). This study also found differences in the treatment 

order across the different network patterns. 

7 Presentation options in network meta-analysis 

7.1 Presentation of the evidence base 

Diagram showing the comparisons in the individual studies of a network. 

Example in Hoaglin et al.[30] (Supplementary material) 

The vertical axis of the graph shows a list of the studies and the horizontal axis presents the three competing 

treatments in the network (BMS, PES, SES). Each horizontal line connects the (two) treatments compared in 

each study. The parentheses report the total number of patients for each trial arm. 

Network graph showing all the available comparisons in the network. 

Example in Hoaglin et al.[30] (Supplementary material) 

Each node in the graph represents an intervention and each edge a direct comparison between two 

treatments. 

Network graph showing all the available comparisons in the network and the available number of trials for 

each comparison as well as the presence of multi-arm trials.  

Example in Lu et al.[9] (Figure 2) 

This network graph separates the direct comparisons derived from two-arm studies (solid lines) from those 

derived from multi-arm studies (dashed lines). The number next to the edges show the total number of trials 

(two- and multi-arm) in each comparison. 

Network graph showing all the available comparisons in the network and the available number of trials for 

each comparison using weighted nodes and edges. 

Example in Salanti et al.[31] (Figure 1) 

In this network graph the size of the nodes and edges is proportional to the number of studies including each 

treatment and comparison respectively. 

Network graph showing all the available comparisons in the network using weighted nodes and edges and 

the risk of bias level (for a specific item) for each comparison using colored edges. 

Example in Chaimani et al. [32] (Figure 2) 

In this network graph the size of the nodes and edges is proportional to the number of studies including each 

treatment and comparison respectively. The green, yellow and red (not present in this graph) edges represent 
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those comparisons in which most trials are of low, unclear and high risk of bias respectively with respect to 

the adequacy of allocation concealment.  

Table showing the network structure; the available study designs in the network. 

Example in Lu et al.[9] (Figure 2) 

The table below the number of studies including a specific group of treatment arms (denoted with X) 

Matrix showing the available direct comparisons in the network. 

Example in Ioannidis [33] 

The matrix shows the number of available direct comparisons between two treatments (drugs with different 

doses are grouped together) 

Graph showing the data provided by the individual studies of the network. 

Example in Lu & Ades [15] (Figure 1) 

In this graph the horizontal axis presents the four competing treatments in the network and the vertical axis 

includes the observed log-odds values in studies for each trial arm. Each line represents a study and connects 

the treatments that compares. The two blue thick lines correspond to three-arm trials. Since this network has 

a beneficial outcome, lines with positive slope favor the intervention on the right and lines with negative 

slope favor the intervention on the left. 

Graph showing the contribution of each direct comparison in the network estimates. 

Example in Chaimani et al.[32] (Figure 3) 

The graph shows the percentage contribution of each direct comparison in each network meta-analysis 

estimate and in the entire network along with the number of included studies in each comparison. More 

specifically, the network presented in this graph includes 4 treatments and studies form 4 direct 

comparisons. Each value in the upper part of the graph (with title „Network meta-analysis estimates‟ in the 

vertical axis) is the percentage contribution of the direct estimate (in column) to the network estimate (in 

row). For example, the comparison BMS vs. MT is informed 55.7% by its own direct estimate and 22.2% by 

each of the comparisons BMS vs. PTCA and MT vs. PTCA. The second part of the graph („Entire network‟) 

shows the percentage contribution of the 4 direct comparisons in the entire network. The squares are 

proportional to the percentage contributions. 

7.2 Presentation of results 

Forest plot with the treatment effects for all pairwise comparisons including the network estimates, the 

direct estimates and the individual studies’ estimates. 

Example in Hawkins et al.[34] (Figure 3) 
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Forest plot with the network estimates for all treatments compared to the reference. 

Example in Hoaglin et al.[30] (Supplementary material) 

‘Hsu mean-mean plot’ showing all the available pairwise comparisons in the network and the respective 

network estimates with the 95% CI. 

Example in Senn et al.[35] (Figure 6) 

In this graph placebo is taken as a reference treatment and arbitrarily given the value 0. All other treatments 

are expressed as differences to placebo and plotted twice: once on the X axis and once on the Y axis. Each 

of the 45 possible pairwise contrasts is shown as a point in the X,Y plane with its 95% confidence limits 

which are joined to the point estimates by diagonal lines. The magnitude of a relative treatment effect is the 

distance of each point from the dotted diagonal line rising from bottom left to top right. Solid lines represent 

the significant contrasts and dashed lines the non-significant contrasts. 

Shade plot showing the level of significance of the treatment effects for all available pairwise comparisons 

in the network. 

Example in Senn et al.[35] (Figure 4) 

„Bubble-plot’ including the ranking probabilities for all treatments. 

Example in Hawkins et al.[34] (Figure 4) 

The shaded circles in the graph are proportional to the probability for each treatment to be at a specific rank 

in treatment hierarchy. 

‘Rankograms’ showing the probability for each treatment to be at a specific rank in the treatment hierarchy. 

Example in Salanti et al.[36] (Figure 3) 

The horizontal axis in the graphs includes the five possible ranks and the vertical axis the probability of a 

treatment to achieve a rank. 

Bar plots showing the probability for each treatment to be at a specific rank in the treatment hierarchy. 

Example in van Valkenhoef  et al. [37] (Figure 4) 

The horizontal axis in the graph includes the five competing treatments in the network. The size of each bar 

corresponds to the probability of each treatment to be at a specific rank in treatment hierarchy. 

‘SUCRA plots’ showing the cumulative probability for each treatment to be up to a specific rank in the 

treatment hierarchy.  

Example in Salanti et al.[27] (Figure 5) 

The horizontal axis in the graphs includes the five possible ranks and the vertical axis the cumulative 

probability of a treatment to be up to a specific rank. The larger the surface under the cumulative ranking 

curve, the more effective/safer the treatment. 
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‘SUCRA plots’ comparing the ranking results from different models. 

Example in Salanti et al.[38]  (Figure 3) 

Each line pattern in the graphs corresponds to a specific model. 

Scatterplot combining the ranking results for two different outcomes that have been analyzed separately. 

Example in Chaimani et al. [32] (Figure 9) 

The horizontal axis includes the SUCRA values for efficacy and the vertical axis the SUCRA values for 

acceptability. The 14 competing treatments have been separated into 5 groups using clustering methods 

according to their performance on both outcomes. The treatments that perform well on both outcomes are 

those plotted in the upper right corner. 

Network graph presenting the relative treatment effects for each pairwise comparison in the network. 

Example in Fadda et al. [39] 

In the graph the solid lines represent the direct comparisons and the dotted lines the indirect comparisons. 

The symbols „+‟ and „−„ show the favored and non-favored treatment respectively in each comparison 

according to the relative treatment effects. For comparisons with no statistically significant treatment effects 

we replace these symbols with „=t‟ and „=‟ respectively. 

Table showing all the pairwise relative treatment effects with their 95% CI for one or two outcomes. 

Example in Cipriani et al. [40] (Figure 4) 

Each cell in the table includes the OR (95% CI) for the comparison of the treatment in the respective column 

vs. the treatment in the respective row. The gray cells correspond to the dropout rate outcome and the light 

blue cells to the efficacy outcome. The diagonal shows the names of the competing treatments. 

 

7.3 Presentation of inconsistency in the network 

Forest plot with inconsistency factors estimated by the loop-specific approach for inconsistency  

Example in Salanti  et al. [31] (Figure 3) 

The squares in the graph represent the inconsistency factors for every closed loop and the horizontal lines 

the 95% CI. If the 95% CI line does not cross the zero line for a specific loop, there might be important 

inconsistency in the this loop. For example, this graph implies that there is no loop in the network with 

statistically significant inconsistency. However, the loops NGR and NRV show a quite large difference 

between direct and indirect estimates. This implies that these two loops might be possible sources of 

important inconsistency that needs exploration. 

‘Net-heat plot’: a plot showing the contribution of the direct estimates to the network estimates and the 

change in inconsistency when detaching one design from the network  
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Example in Krahn et al.[10] (Figure 5) 

The colors are associated with the change in inconsistency between direct and indirect evidence in the 

comparison shown in the row after detaching the effect of the comparison shown in the column. Blue colors 

indicate an increase and warm colors indicate a decrease (the stronger the intensity of the color, the stronger 

the change). In this way comparisons corresponding to warm colors (mostly orange and red) in the off-

diagonal elements are possible important sources of inconsistency (for example the comparison metl vs. 

SUal).  The comparison-specific inconsistencies are the summands in the      (see section 4.8) 

corresponding to each comparison. (see also the „Graph showing the contribution of each direct comparison 

in the network estimates‟). 

Density plot comparing the posterior densities of the treatment effect for a specific comparison between 

network, direct and indirect estimates. 

Example in Dias et al. [14] (Figure 4) 

The dotted line is the density of the log-odds ratio for a specific treatment comparison derived from the full 

NMA model (including all available data), the solid line is the density for the same comparison derived only 

from direct comparisons and the dashed line represents the density derived from the indirect evidence (the 

comparison is excluded from the network). There is an obvious disagreement between the sources of 

evidence.   

7.4 Presentation of heterogeneity in the network 

Graph showing the network summary estimates with their CI/CrI and the predictive interval for all 

comparisons. 

Example in Chaimani et al.[32] (Figure 6) 

The black horizontal lines represent the CI of the network summary estimates in odds ratio scale and the red 

lines the predictive intervals. In this example a common heterogeneity for all comparisons has been 

assumed. 

 

8 What we expect to see in a Cochrane protocol and review 

Several papers have been published that make recommendations regarding the reporting of NMA [30,41-

47]. According to these publications, any NMA should follow the conventional reporting guidelines for 

systematic reviews and pairwise meta-analyses plus a set of additional items specific to the context of NMA.  

The various publications appear to agree in a number of items that need to be reported.  Researchers should 

clearly define the research question and the search strategy including the specification of the target 

population, inclusion criteria for the individual trials, the competing treatments and the outcomes of interest. 

A discussion on the similarity of patient populations and study designs within and across treatment 
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comparisons is important to infer about the plausibility of the homogeneity and transitivity assumptions, 

while the evaluation of the validity of results requires assessment of the level of credibility of the individual 

studies. Researchers are also encouraged to describe the methods they used to evaluate the statistical 

heterogeneity and inconsistency. Presentation of the analysis should include a detailed specification of the 

model, a statement about modeling multi-arm trials, measures of model fit, the assumption employed for the 

heterogeneity (see section 3.6), the software used and the methods they employed to explain important 

heterogeneity and inconsistency, if present. Finally, it is advisable to present both the direct and network 

treatment effect estimates for the pairwise comparisons of interest, the relative ranking results and results 

from subgroup analyses or network meta-regression, if such analyses have been applied.   

 

Two initiatives are currently working towards this direction and their output is based on (narrow or wider) 

consensus: 

1. An attempt to extend the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-

Analysis) statement [48] is in progress and preliminary results of this initiative will be distributed to 

the meeting attendants. 

2.  The AMCP/NPC/ISPOR Comparative Effectiveness Research Collaborative Initiative has 

developed an instrument to assess the relevance and credibility of an indirect treatment comparison 

or network meta-analysis (unpublished work). The developed assessment tool consists of 6 

categories with a total of 26 questions related to the relevance and credibility of an indirect 

comparison or network meta-analysis. Although this is not a reporting guideline, it highlights the 

methodological components associated with the credibility of the NMA results. The tool will be 

discussed in the meeting.  

9 List of Appendices 

Appendix 1: References to methodological papers 

Appendix 2: Glossary 
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