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The TRIPOD (Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis) Statement includes
a 22-item checklist, which aims to improve the reporting of stud-
ies developing, validating, or updating a prediction model,
whether for diagnostic or prognostic purposes. The TRIPOD
Statement aims to improve the transparency of the reporting of a
prediction model study regardless of the study methods used.
This explanation and elaboration document describes the ratio-
nale; clarifies the meaning of each item; and discusses why trans-
parent reporting is important, with a view to assessing risk of bias
and clinical usefulness of the prediction model. Each checklist
item of the TRIPOD Statement is explained in detail and accom-

panied by published examples of good reporting. The docu-
ment also provides a valuable reference of issues to consider
when designing, conducting, and analyzing prediction model
studies. To aid the editorial process and help peer reviewers
and, ultimately, readers and systematic reviewers of prediction
model studies, it is recommended that authors include a com-
pleted checklist in their submission. The TRIPOD checklist can
also be downloaded from www.tripod-statement.org.
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In medicine, numerous decisions are made by care
providers, often in shared decision making, on the

basis of an estimated probability that a specific disease
or condition is present (diagnostic setting) or a specific
event will occur in the future (prognostic setting) in an
individual. In the diagnostic setting, the probability that
a particular disease is present can be used, for exam-
ple, to inform the referral of patients for further testing,
to initiate treatment directly, or to reassure patients that
a serious cause for their symptoms is unlikely. In the
prognostic context, predictions can be used for plan-
ning lifestyle or therapeutic decisions on the basis of
the risk for developing a particular outcome or state of
health within a specific period (1–3). Such estimates
of risk can also be used to risk-stratify participants in
therapeutic intervention trials (4–7).

In both the diagnostic and prognostic setting,
probability estimates are commonly based on combin-
ing information from multiple predictors observed or
measured from an individual (1, 2, 8–10). Information
from a single predictor is often insufficient to provide
reliable estimates of diagnostic or prognostic probabil-
ities or risks (8, 11). In virtually all medical domains,
diagnostic and prognostic multivariable (risk) predic-
tion models are being developed, validated, updated,
and implemented with the aim to assist doctors and
individuals in estimating probabilities and potentially
influence their decision making.

A multivariable prediction model is a mathematical
equation that relates multiple predictors for a particular
individual to the probability of or risk for the presence
(diagnosis) or future occurrence (prognosis) of a partic-
ular outcome (10, 12). Other names for a prediction
model include risk prediction model, predictive model,
prognostic (or prediction) index or rule, and risk score
(9).

Predictors are also referred to as covariates, risk
indicators, prognostic factors, determinants, test results,
or—more statistically—independent variables. They may
range from demographic characteristics (for example,
age and sex), medical history–taking, and physical ex-
amination results to results from imaging, electrophys-
iology, blood and urine measurements, pathologic ex-
aminations, and disease stages or characteristics, or
results from genomics, proteomics, transcriptomics,
pharmacogenomics, metabolomics, and other new bi-
ological measurement platforms that continuously
emerge.

DIAGNOSTIC AND PROGNOSTIC PREDICTION

MODELS
Multivariable prediction models fall into 2 broad

categories: diagnostic and prognostic prediction mod-
els (Box A). In a diagnostic model, multiple—that is, 2 or
more—predictors (often referred to as diagnostic test
results) are combined to estimate the probability that a
certain condition or disease is present (or absent) at the
moment of prediction (Box B). They are developed
from and to be used for individuals suspected of hav-
ing that condition.

In a prognostic model, multiple predictors are
combined to estimate the probability of a particular
outcome or event (for example, mortality, disease re-
currence, complication, or therapy response) occurring
in a certain period in the future. This period may range
from hours (for example, predicting postoperative
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complications [13]) to weeks or months (for example,
predicting 30-day mortality after cardiac surgery [14])
or years (for example, predicting the 5-year risk for de-
veloping type 2 diabetes [15]).

Prognostic models are developed and are to be
used in individuals at risk for developing that outcome.
They may be models for either ill or healthy individuals.
For example, prognostic models include models to
predict recurrence, complications, or death in a certain
period after being diagnosed with a particular disease.
But they may also include models for predicting the
occurrence of an outcome in a certain period in individ-
uals without a specific disease: for example, models to
predict the risk for developing type 2 diabetes (16) or
cardiovascular events in middle-aged nondiseased in-
dividuals (17), or the risk for preeclampsia in pregnant
women (18). We thus use prognostic in the broad
sense, referring to the prediction of an outcome in the
future in individuals at risk for that outcome, rather than
the narrower definition of predicting the course of pa-
tients who have a particular disease with or without
treatment (1).

The main difference between a diagnostic and
prognostic prediction model is the concept of time. Di-

agnostic modeling studies are usually cross-sectional,
whereas prognostic modeling studies are usually longi-
tudinal. In this document, we refer to both diagnostic
and prognostic prediction models as “prediction mod-
els,” highlighting issues that are specific to either type
of model.

DEVELOPMENT, VALIDATION, AND UPDATING

OF PREDICTION MODELS
Prediction model studies may address the devel-

opment of a new prediction model (10), a model eval-
uation (often referred to as model validation) with or
without updating of the model [19–21]), or a combina-
tion of these (Box C and Figure 1).

Model development studies aim to derive a predic-
tion model by selecting predictors and combining
them into a multivariable model. Logistic regression is
commonly used for cross-sectional (diagnostic) and
short-term (for example 30-day mortality) prognostic
outcomes and Cox regression for long-term (for exam-
ple, 10-year risk) prognostic outcomes. Studies may
also focus on quantifying the incremental or added

Box A. Schematic representation of diagnostic and prognostic prediction modeling studies.

Predictors:
Patient characteristics

(symptoms & signs)
Imaging tests
Laboratory tests
Others

Diagnostic multivariable modeling study

Subjects with presenting
symptoms

Outcome:
Disease present

or absent
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Cross-sectional
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Predictors:
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Disease characteristics
Imaging tests
Laboratory tests
Others

Prognostic multivariable modeling study

Subjects in a
health state

T = 0

T = 0

Longitudinal
relationship

End of
follow-up

Y Y Y

The nature of the prediction in diagnosis is estimating the probability that a specific outcome or disease is present (or absent) within an individual,
at this point in time—that is, the moment of prediction (T = 0). In prognosis, the prediction is about whether an individual will experience a specific
event or outcome within a certain time period. In other words, in diagnostic prediction the interest is in principle a cross-sectional relationship,
whereas prognostic prediction involves a longitudinal relationship. Nevertheless, in diagnostic modeling studies, for logistical reasons, a time
window between predictor (index test) measurement and the reference standard is often necessary. Ideally, this interval should be as short as
possible without starting any treatment within this period.
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predictive value of a specific predictor (for example,
newly discovered) (22) to a prediction model.

Quantifying the predictive ability of a model on the
same data from which the model was developed (often
referred to as apparent performance [Figure 1]) will
tend to give an optimistic estimate of performance, ow-
ing to overfitting (too few outcome events relative to
the number of candidate predictors) and the use of
predictor selection strategies (23–25). Studies develop-
ing new prediction models should therefore always in-
clude some form of internal validation to quantify any
optimism in the predictive performance (for example,
calibration and discrimination) of the developed model
and adjust the model for overfitting. Internal validation
techniques use only the original study sample and
include such methods as bootstrapping or cross-
validation. Internal validation is a necessary part of
model development (2).

After developing a prediction model, it is strongly
recommended to evaluate the performance of the
model in other participant data than was used for the
model development. External validation (Box C and
Figure 1) (20, 26) requires that for each individual in the
new participant data set, outcome predictions are
made using the original model (that is, the published
model or regression formula) and compared with the
observed outcomes. External validation may use partic-
ipant data collected by the same investigators, typically
using the same predictor and outcome definitions and
measurements, but sampled from a later period (tem-
poral or narrow validation); by other investigators in
another hospital or country (though disappointingly
rare [27]), sometimes using different definitions and
measurements (geographic or broad validation); in

similar participants, but from an intentionally different
setting (for example, a model developed in secondary
care and assessed in similar participants, but selected
from primary care); or even in other types of partici-
pants (for example, model developed in adults and as-
sessed in children, or developed for predicting fatal
events and assessed for predicting nonfatal events) (19,
20, 26, 28–30). In case of poor performance (for exam-
ple, systematic miscalibration), when evaluated in an
external validation data set, the model can be updated
or adjusted (for example, recalibrating or adding a new
predictor) on the basis of the validation data set (Box C)
(2, 20, 21, 31).

Randomly splitting a single data set into model de-
velopment and model validation data sets is frequently
done to develop and validate a prediction model; this
is often, yet erroneously, believed to be a form of ex-
ternal validation. However, this approach is a weak and
inefficient form of internal validation, because not all
available data are used to develop the model (23, 32).
If the available development data set is sufficiently
large, splitting by time and developing a model using
data from one period and evaluating its performance
using the data from the other period (temporal valida-
tion) is a stronger approach. With a single data set,
temporal splitting and model validation can be consid-
ered intermediate between internal and external
validation.

INCOMPLETE AND INACCURATE REPORTING
Prediction models are becoming increasingly

abundant in the medical literature (9, 33, 34), and
policymakers are increasingly recommending their use

Box B. Similarities and differences between diagnostic and prognostic prediction models.

 Despite the different nature (timing) of the prediction, there are many similarities between diagnostic and prognostic prediction models, including: 

• Type of outcome is often binary: either disease of interest present versus absent (in diagnosis) or the future occurrence of an event yes or no (in 

prognosis). 

• The key interest is to generate the probability of the outcome being present or occurring for an individual, given the values of 2 or more predictors, with 

the purpose of informing patients and guiding clinical decision making.

• The same challenges as when developing a multivariable prediction model, such as selection of the predictors, model-building strategies, and handling of 

continuous predictors and the danger of overfitting.

• The same measures for assessing model performance.

Different terms for similar features between diagnostic and prognostic modeling studies are summarized below.

Diagnostic Prediction Modeling Study

Diagnostic tests or index tests

Target disease/disorder (presence vs. absence)

Reference standard and disease verification

Partial verification

Explanatory variables, predictors, covariates (X variables)

Outcome (Y variable)

Missing outcomes

Prognostic Prediction Modeling Study

Prognostic factors or indicators

Event (future occurrence: yes or no)

Event definition and event measurement

Loss to follow-up and censoring
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in clinical practice guidelines (35–40). For some specific
diseases, there is an overwhelming number of compet-
ing prediction models for the same outcome or target
population. For example, there are over 100 prognostic
models for predicting outcome after brain trauma (41),
over 100 models for prostate cancer (42), over 60 mod-
els for breast cancer prognosis (43), 45 models for car-
diovascular events after being diagnosed with diabetes
(44), over 40 models for predicting prevalent and inci-
dent type 2 diabetes (45), and 20 models for predicting
prolonged intensive care unit (ICU) stay after cardiac
surgery (46).

Given the abundance of published prediction
models across almost all clinical domains, critical ap-
praisal and synthesis of the available reports is a re-
quirement to enable readers, care providers, and
policymakers to judge which models are useful in
which situations. Such an assessment, in turn, is possi-
ble only if key details of how prediction models were
developed and validated are clearly reported (47, 48).
Only then can generalizability and risk of bias of pub-
lished prediction models be adequately assessed (49,
50), and subsequent researchers can replicate on the
same data, if needed, the steps taken to obtain the
same results (51, 52). Many reviews have illustrated,
however, that the quality of published reports that de-
scribe the development or validation of prediction
models across many different disease areas and differ-
ent journals is poor (3, 34, 41, 43, 45, 46, 48, 53–95).
For example, in a review of newly developed prediction
models in the cancer literature (54, 55), reporting was
disappointingly poor, with insufficient information pro-
vided about all aspects of model development. The
same was found in a recent review of prediction mod-
els for prevalent or incident type 2 diabetes (45) and of
prediction models published in 6 high-impact general
medical journals (34).

Reporting guidelines for randomized trials
(CONSORT [96]), observational studies (STROBE [97]),
tumor marker studies (REMARK [98]), molecular epide-
miology (STROBE-ME [99]), diagnostic accuracy
(STARD [100]), and genetic risk prediction studies
(GRIPS [101]) contain items that are relevant to all types
of studies, including those developing or validating
prediction models. The 2 guidelines most closely re-
lated to prediction models are REMARK and GRIPS.
However, the focus of the REMARK checklist is primarily
on prognostic factors and not prediction models,
whereas the GRIPS statement is aimed at risk prediction
using genetic risk factors and the specific methodolog-
ical issues around handling large numbers of genetic
variants.

To address a broader range of studies, we devel-
oped the TRIPOD guideline: Transparent Reporting of
a multivariable prediction model for Individual Progno-
sis Or Diagnosis. TRIPOD explicitly covers the develop-
ment and validation of prediction models for both di-
agnosis and prognosis, for all medical domains and all
types of predictors. TRIPOD also places considerable
emphasis on model validation studies and the report-
ing requirements for such studies.

Box C. Types of prediction model studies.

Prediction model development studies without validation* in other 
participant data aim to develop 1 (or more) prognostic or diagnostic 
prediction model(s) from the data set at hand: the development set. Such 
studies commonly aim to identify the important predictors for the 
outcome, assign the mutually adjusted weights per predictor in a 
multivariable analysis, develop a prediction model to be used for 
individualized predictions, and quantify the predictive performance (e.g., 
discrimination, calibration, classification) of that model in the 
development set. Sometimes, the development may focus on quantifying 
the incremental or added predictive value of a specific (e.g., newly 
discovered) predictor. In development studies, overfitting may occur, 
particularly in small development data sets. Hence, development studies 
ideally include some form of resampling techniques, such as 
bootstrapping, jack-knife, or cross-validation. These methods quantify 
any optimism in the predictive performance of the developed model and 
what performance might be expected in other participants from the 
underlying source population from which the development sample 
originated (see Figure 1). These resampling techniques are often referred 
to as "internal validation of the model," because no data other than the 
development set are used; everything is estimated "internally" with the 
data set at hand. Internal validation is thus always part of model 
development studies (see Figure 1 and Box F).

Prediction model development studies with validation* in other 
participant data have the same aims as the previous type, but the 
development of the model is followed by quantifying the model's 
predictive performance in participant data other than the development 
data set (see Figure 1). This may be done in participant data collected by 
the same investigators, commonly using the same predictor and outcome 
definitions and measurements, but sampled from a later time period 
(so-called "temporal" or "narrow" validation); by other investigators in 
another hospital or country, sometimes using different definitions and 
measurements (geographic or broad validation); in similar participants, 
but from an intentionally chosen different setting (e.g., model developed 
in secondary care and tested in similar participants, but selected from 
primary care); or even in other types of participants (e.g., model 
developed in adults and tested in children, or developed for predicting 
fatal events and tested for predicting nonfatal events). Randomly 
splitting a single data set into a development and a validation data set is 
often erroneously referred to as a form of external validation* of the 
model. But this is an inefficient form of "internal" rather than "external" 
validation, because the 2 data sets only differ by chance (see Figure 1).

Model validation* studies without or with model updating aim to 
assess and compare the predictive performance of 1 (or more) existing 
prediction models by using participant data that were not used to 
develop the prediction model. When a model performs poorly, a 
validation study can be followed by updating or adjusting the existing 
model (e.g., recalibrating or extending the model by adding newly 
discovered predictors). In theory, a study may address only the updating 
of an existing model in a new data set, although this is unlikely and 
undesirable without first doing a validation of the original model in the 
new data set (see Figure 1). 

* The term validation, although widely used, is misleading, because it 
indicates that model validation studies lead to a "yes" (good validation) 
or "no" (poor validation) answer on the model's performance. However, 
the aim of model validation is to evaluate (quantify) the model's 
predictive performance in either resampled participant data of the 
development data set (often referred to as internal validation) or in 
other, independent participant data that were not used for developing 
the model (often referred to as external validation).
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THE TRIPOD STATEMENT
Prediction model studies can be subdivided into 5

broad categories (1, 8–10, 19, 20, 28, 33, 102–104): 1)
prognostic or diagnostic predictor finding studies, 2)
prediction model development studies without exter-
nal validation, 3) prediction model development stud-
ies with external validation, 4) prediction model valida-
tion studies, and 5) model impact studies. TRIPOD
addresses the reporting of prediction model studies
aimed at developing or validating 1 or more prediction
models (Box C). These development and validation

studies can in turn be subdivided into various types
(Figure 1). An increasing number of studies are evalu-
ating the incremental value (103) of a specific predictor,
to assess whether an existing prediction model
may need to be updated or adjusted (22, 105, 106).
TRIPOD also addresses such studies (Box C and
Figure 1).

Prognostic or diagnostic predictor finding studies
and model impact studies often have different aims,
designs, and reporting issues compared with studies
developing or validating prediction models. The for-

Figure 1. Types of prediction model studies covered by the TRIPOD statement.

 Type 1a Development of a prediction model where predictive performance is then directly evaluated using exactly the same data (apparent performance).

 Type 1b Development of a prediction model using the entire data set, but then using resampling (e.g., bootstrapping or cross-validation) techniques to 

evaluate the performance and optimism of the developed model.  Resampling techniques, generally referred to as “internal validation”, are 

recommended as a prerequisite for prediction model development, particularly if data are limited (6, 14, 15).

 Type 2a The data are randomly split into 2 groups: one to develop the prediction model, and one to evaluate its predictive performance.  This design is 

generally not recommended or better than type 1b, particularly in case of limited data, because it leads to lack of power during model development 

and validation (14, 15, 16).

 Type 2b The data are nonrandomly split (e.g., by location or time) into 2 groups: one to develop the prediction model and one to evaluate its predictive 

performance.  Type 2b is a stronger design for evaluating model performance than type 2a, because allows for nonrandom variation between the 

2 data sets (6, 13, 17).

 Type 3 Development of a prediction model using 1 data set and an evaluation of its performance on separate data (e.g., from a different study).

 Type 4 The evaluation of the predictive performance of an existing (published) prediction model on separate data (13).

Types 3 and 4 are commonly referred to as “external validation studies.” Arguably type 2b is as well, although it may be considered an intermediary between 

internal and external validation.  

D

Type 4: Validation only

Type 3: Development and validation
using separate data

Type 2b: Nonrandom split-sample
development and validation

Type 2a: Random split-sample
development and validation

Analysis
Type

Description

D V

D V

V

Type 1b: Development and validation
using resampling

Type 1a: Development only

Only a single data set 
is available: All data 
are used to develop 

the model

Only a single data set 
is available: A portion 
of the data are used to

develop the model

Only a single data set 
is available: A separate

data set is available 
for validation

D = development data; V = validation data.
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mer commonly seek to identify predictors that inde-
pendently contribute to the prediction of (that is, are
associated with) a particular prognostic or diagnostic
outcome. The aim is not to develop a final prediction
model to be used for individualized predictions in
other individuals. Prediction model impact studies aim
to quantify the effect (impact) of using a prediction
model on participant and physician decision making or
directly on participant health outcomes, relative to not
using the model (20, 102, 107). Model impact studies
thus follow a comparative intervention design, rather
than the single cohort design used in model develop-
ment or validation studies, and are ideally a (cluster)
randomized design. However, many items addressed in
this reporting guideline do apply to these 2 other types
of prediction research, although other reporting guide-
lines might serve them better. The REMARK guideline
explicitly addresses the reporting of (single) prognostic
factor studies (98, 108), and the CONSORT (96, 109)
and STROBE (97) Statements are relevant guidelines
for reporting of randomized or nonrandomized model
impact studies, respectively.

Furthermore, TRIPOD primarily addresses predic-
tion models for binary (for example, disease presence
or absence) or time-to-event outcomes (for example,
10-year cardiovascular disease), because these are the
most common types of outcomes to be predicted in
medicine. However, outcomes may also be continuous
measurements (for example, blood pressure, tumor
size, percentage vessel stenosis, IQ scores, quality of
life, or length of hospital stay), nominal outcomes (for
example, the differential diagnosis rather than target
disease present or absent; type of infection defined as
viral, bacterial or no infection), or ordinal outcomes (for
example, cancer stage, Glasgow Coma Scale [110], or
Rankin scale [111]), for which prediction models may
also be developed (2, 112). Most recommendations
and reporting items in TRIPOD apply equally to the re-
porting of studies aimed at developing or validating
prediction models for such outcomes.

Moreover, TRIPOD focuses on prediction models
developed by regression modeling, because this is the
approach by which most prediction models are devel-
oped, validated, or updated in medical research. How-
ever, most items equally apply to prediction tools de-
veloped, validated, or updated with other techniques,
such as classification trees, neural networks, genetic
programming, random forests, or vector machine
learning techniques. The main difference in these
other approaches over regression modeling is the
method of data analysis to derive the prediction model.
Problems of transparency in these nonregression mod-
eling approaches are a particular concern, especially
regarding reproducible research and implementation
in practice.

DEVELOPMENT OF TRIPOD
We followed published guidance for developing

reporting guidelines (113) and established a steering
committee (Drs. Collins, Altman, Moons, and Reitsma)

to organize and coordinate the development of
TRIPOD. We conducted a systematic search of
MEDLINE, EMBASE, PsycINFO, and Web of Science to
identify any published articles making recommenda-
tions on reporting of multivariable prediction models
or on methodological aspects of developing or validat-
ing a prediction model, reviews of published reports of
multivariable prediction models that evaluated meth-
odological conduct or reporting, and reviews of meth-
odological conduct and reporting of multivariable
models in general. From these studies, a list of 129
possible checklist items was generated. The steering
group then merged related items to create a list of 76
candidate items.

Twenty-five experts with a specific interest in pre-
diction models were invited by e-mail to participate in
the Web-based survey and to rate the importance of
the 76 candidate checklist items. Respondents (24 of
27) included methodologists, health care professionals,
and journal editors. (In addition to the 25 meeting par-
ticipants, the survey was also completed by 2 statistical
editors from Annals of Internal Medicine.)

Twenty-four experts (22 of whom had participated
in the survey) attended a 3-day meeting in Oxford,
United Kingdom, in June 2011. This multidisciplinary
group included statisticians, epidemiologists, method-
ologists, healthcare professionals, and journal editors
(Appendix) (114). Several of the group also had expe-
rience in developing reporting guidelines for other
types of clinical studies.

At the meeting, the results of the survey were pre-
sented, and each of the 76 candidate checklist items
was discussed in turn. For each item, consensus was
reached on whether to retain, merge with another item,
or omit the item. Meeting participants were also asked
to suggest additional items. After the meeting, the
checklist was revised by the steering committee during
numerous face-to-face meetings, and circulated to the
participants to ensure it reflected the discussions. While
making revisions, conscious efforts were made to har-
monize our recommendations with other guidelines,
and where possible we chose the same or similar word-
ing for items.

THE TRIPOD STATEMENT: EXPLANATION AND

ELABORATION
Aim and Outline of This Document

The TRIPOD Statement is a checklist of 22 items
considered essential for good reporting of studies de-
veloping or validating multivariable prediction models
(Table 1) (114). The items relate to the title and abstract
(items 1 and 2), background and objectives (item 3),
methods (items 4 through 12), results (items 13 through
17), discussion (items 18 through 20), and other infor-
mation (items 21 and 22). The TRIPOD Statement cov-
ers studies that report solely development, both devel-
opment and external validation, and solely external
validation (with or without model updating) of a diag-
nostic or prognostic prediction model (Box C). There-
fore, some items (denoted D) are relevant only for re-
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Table 1. Checklist of Items to Include When Reporting a Study Developing or Validating a Multivariable Prediction Model for
Diagnosis or Prognosis*

Section/Topic Item Development
or Validation?

Checklist Item Page

Title and abstract
Title 1 D;V Identify the study as developing and/or validating a multivariable prediction model,

the target population, and the outcome to be predicted
Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size,

predictors, outcome, statistical analysis, results, and conclusions

Introduction
Background and

objectives
3a D;V Explain the medical context (including whether diagnostic or prognostic) and

rationale for developing or validating the multivariable prediction model,
including references to existing models

3b D;V Specify the objectives, including whether the study describes the development or
validation of the model or both

Methods
Source of data 4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or

registry data), separately for the development and validation data sets, if
applicable

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if
applicable, end of follow-up

Participants 5a D;V Specify key elements of the study setting (e.g., primary care, secondary care,
general population) including number and location of centres

5b D;V Describe eligibility criteria for participants
5c D;V Give details of treatments received, if relevant

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including
how and when assessed

6b D;V Report any actions to blind assessment of the outcome to be predicted
Predictors 7a D;V Clearly define all predictors used in developing the multivariable prediction model,

including how and when they were measured
7b D;V Report any actions to blind assessment of predictors for the outcome and other

predictors
Sample size 8 D;V Explain how the study size was arrived at
Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single

imputation, multiple imputation) with details of any imputation method
Statistical analysis methods 10a D Describe how predictors were handled in the analyses

10b D Specify type of model, all model-building procedures (including any predictor
selection), and method for internal validation

10c V For validation, describe how the predictions were calculated
10d D;V Specify all measures used to assess model performance and, if relevant, to

compare multiple models
10e V Describe any model updating (e.g., recalibration) arising from the validation, if

done
Risk groups 11 D;V Provide details on how risk groups were created, if done
Development vs. validation 12 V For validation, identify any differences from the development data in setting,

eligibility criteria, outcome, and predictors

Results
Participants 13a D;V Describe the flow of participants through the study, including the number of

participants with and without the outcome and, if applicable, a summary of the
follow-up time. A diagram may be helpful

13b D;V Describe the characteristics of the participants (basic demographics, clinical
features, available predictors), including the number of participants with missing
data for predictors and outcome

13c V For validation, show a comparison with the development data of the distribution of
important variables (demographics, predictors and outcome)

Model development 14a D Specify the number of participants and outcome events in each analysis
14b D If done, report the unadjusted association between each candidate predictor and

outcome
Model specification 15a D Present the full prediction model to allow predictions for individuals (i.e., all

regression coefficients, and model intercept or baseline survival at a given time
point)

15b D Explain how to use the prediction model
Model performance 16 D;V Report performance measures (with CIs) for the prediction model
Model updating 17 V If done, report the results from any model updating (i.e., model specification,

model performance)

(Continued on following page)
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porting the development of a prediction model (items
10a, 10b, 14, and 15), and others (denoted V) apply
only to reporting the (external) validation of a predic-
tion model (items 10c, 10e, 12, 13c, 17, and 19a). All
other items are relevant to all types of prediction model
development and validation studies. Items relevant to
all study types are denoted by D;V.

Discussion and explanation of all 22 items in the
TRIPOD checklist (Table 1) are presented. We have
split the discussion of a few complex and lengthy items
into multiple parts to aid clarity.

The primary aim of this explanation and elabora-
tion document is to outline a framework for improved
reporting of prediction modeling studies. Many such
studies are methodologically weak, however, so in this
document, we also summarize the qualities of good
(and the limitations of less good) studies, regardless of
reporting.

Use of Examples
For each item, we present examples from pub-

lished articles of both development and validation of
prediction models, and often for both diagnosis and
prognosis; they illustrate the type of information that is
appropriate to report. Our use of a particular example
does not imply that all aspects of the study were well
conducted and reported, or that the methods being
reported are necessarily the best methods to be used
in prediction model research. Rather, the examples il-
lustrate a particular aspect of an item that has been well
reported in the context of the methods used by the
study authors. Some of the quoted examples have
been edited, with text omitted (denoted by . . . ), text
added (denoted by [ ]), citations removed, or abbrevi-
ations spelled out, and some tables have been
simplified.

USE OF TRIPOD
Depending on the type of prediction model study

(development, validation, or both), each checklist item
(relevant to the study type) should be addressed some-
where in the report. If a particular checklist item cannot

be addressed, acknowledgment that the information is
unknown or irrelevant (if so) should be clearly reported.
Although many of the items have a natural order and
sequence in a report, some do not. We therefore do
not stipulate a structured format, because this may also
depend on journal formatting policies. Authors may
find it convenient to report information for some of the
requested items in a supplementary material section
(for example, in online appendices).

To help the editorial process; peer reviewers; and,
ultimately, readers, we recommend submitting the
checklist as an additional file with the report, including
indicating the pages where information for each item
is reported. The TRIPOD reporting template for the
checklist can be downloaded from www.tripod
-statement.org.

Announcements and information relating to TRIPOD
will be broadcast on the TRIPOD Twitter address
(@TRIPODStatement). The Enhancing the QUAlity and
Transparency Of health Research (EQUATOR) Network
(www.equator-network.org) will help disseminate and
promote the TRIPOD Statement.

THE TRIPOD CHECKLIST

Title and Abstract
Title

Item 1. Identify the study as developing and/or
validating a multivariable prediction model, the
target population, and the outcome to be pre-
dicted. [D;V]

Examples

Development and validation of a clinical score
to estimate the probability of coronary artery
disease in men and women presenting with
suspected coronary disease (115). [Diagnosis;
Development; Validation]

Table 1—Continued

Section/Topic Item Development
or Validation?

Checklist Item Page

Discussion
Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events

per predictor, missing data)
Interpretation 19a V For validation, discuss the results with reference to performance in the

development data, and any other validation data
19b D;V Give an overall interpretation of the results, considering objectives, limitations,

results from similar studies, and other relevant evidence
Implications 20 D;V Discuss the potential clinical use of the model and implications for future research

Other information
Supplementary

information
21 D;V Provide information about the availability of supplementary resources, such as

study protocol, Web calculator, and data sets
Funding 22 D;V Give the source of funding and the role of the funders for the present study

* Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are
denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation
and Elaboration document.
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Development and external validation of prog-
nostic model for 2 year survival of non small
cell lung cancer patients treated with chemora-
diotherapy (116). [Prognosis; Development;
Validation]

Predicting the 10 year risk of cardiovascular
disease in the United Kingdom: independent
and external validation of an updated version
of QRISK2 (117). [Prognosis; Validation]

Development of a prediction model for 10 year
risk of hepatocellular carcinoma in middle-
aged Japanese: the Japan Public Health Cen-
ter based Prospective Study Cohort II (118).
[Prognosis; Development]

Example With Additional Information

Development and validation of a logistic re-
gression derived algorithm for estimating the
incremental probability of coronary artery dis-
ease before and after exercise testing (119).
[Diagnosis; Development; Validation]

Examples of Well-Known Models

Validation of the Framingham coronary heart
disease prediction scores: results of a multiple
ethnic groups investigation (120). [Prognosis;
Validation]

External validation of the SAPS II APACHE II
and APACHE III prognostic models in South
England: a multicentre study (121). [Prognosis;
Validation]

Explanation
To enhance the retrieval by potential readers or

systematic reviewers of multivariable prediction model
studies, it is important that the title be as detailed as
possible, without becoming too long. Authors may ide-
ally address 4 main elements in their title:

Type of modeling study (development, validation
or both).

Clinical context (diagnostic or prognostic).
Target population (individuals or patients for whom

the model is intended).
Outcome that is predicted by the model.
Prediction model studies address model develop-

ment (including internal validation; item 10b), external
validation, or both (Box C and Figure 1). Authors
should explicitly identify their study type by using these
terms in the title. Likewise, if the study is updating an
existing model, or focusing on the incremental value of
a specific predictor, it is helpful to say so. Moreover,
because many readers are interested in retrieving the
available literature on a specific population or subpop-
ulation of individuals or patients, or on a specific out-
come in these persons, it is helpful also to include such
identifying terms in the title.

Addressing these issues in a manuscript title is pos-
sible without creating long titles, as the above exam-
ples from published articles show. Studies including
external validation, whether as the sole aim or in con-
junction with developing a prediction model, should
clearly indicate this in the title.

The terms diagnostic and prognostic are often not
mentioned explicitly, but are implicitly covered by the
description of the study population or outcomes. For
example, the title that includes “ . . . in men and women
presenting with suspected coronary artery disease”
clearly indicates that this is a study of a diagnostic
model (115). Some prediction models are so well
known by their given names only that titles of subse-
quent validation studies do not address the targeted
population or predicted outcome. However, if the
study is focusing on validating a well-known model in a
different setting or predicting a different outcome, then
this should be made clear in the title.

Sometimes the type of predictors (for example,
predictors from patient history or physical examina-
tion), the timing of the prediction (for example, predic-
tion of postoperative outcomes using preoperative pa-
tient characteristics), and the timing of the outcome (for
example, 10-year risk for cardiovascular disease) can
also be added to the title to further specify the nature
of the study without unduly lengthening the title.

In a recent review of 78 external validation studies,
only 27% (21 of 78) had the term “validation” or “valid-
ity” in the title of the article, and only 1 article explicitly
stated in the title that the validation was carried out by
independent investigators (122).

Abstract
Item 2. Provide a summary of objectives, study

design, setting, participants, sample size, predic-
tors, outcome, statistical analysis, results, and con-
clusions. [D;V]

Examples

OBJECTIVE: To develop and validate a prog-
nostic model for early death in patients with
traumatic bleeding.
DESIGN: Multivariable logistic regression of a
large international cohort of trauma patients.
SETTING: 274 hospitals in 40 high, medium,
and low income countries.
PARTICIPANTS: Prognostic model develop-
ment: 20,127 trauma patients with, or at risk of,
significant bleeding, within 8 hours of injury in
the Clinical Randomisation of an Antifibrino-
lytic in Significant Haemorrhage (CRASH 2)
trial. External validation: 14,220 selected
trauma patients from the Trauma Audit and Re-
search Network (TARN), which included mainly
patients from the UK.
OUTCOMES: In hospital death within 4 weeks
of injury.
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RESULTS: 3076 (15%) patients died in the
CRASH 2 trial and 1765 (12%) in the TARN
dataset. Glasgow coma score, age, and systolic
blood pressure were the strongest predictors
of mortality. Other predictors included in the
final model were geographical region (low,
middle, or high income country), heart rate,
time since injury, and type of injury. Discrimina-
tion and calibration were satisfactory, with C
statistics above 0.80 in both CRASH 2 and
TARN. A simple chart was constructed to read-
ily provide the probability of death at the point
of care, and a web based calculator is available
for a more detailed risk assessment (http:
//crash2.lshtm.ac.uk).
CONCLUSIONS: This prognostic model can be
used to obtain valid predictions of mortality in
patients with traumatic bleeding, assisting in
triage and potentially shortening the time to
diagnostic and lifesaving procedures (such as
imaging, surgery, and tranexamic acid). Age is
an important prognostic factor, and this is of
particular relevance in high income countries
with an aging trauma population (123). [Prog-
nosis; Development]
OBJECTIVE: To validate and refine previously
derived clinical decision rules that aid the effi-
cient use of radiography in acute ankle injuries.
DESIGN: Survey prospectively administered in
two stages: validation and refinement of the
original rules (first stage) and validation of the
refined rules (second stage).
SETTING: Emergency departments of two uni-
versity hospitals.
PATIENTS: Convenience sample of adults with
acute ankle injuries: 1032 of 1130 eligible pa-
tients in the first stage and 453 of 530 eligible
patients in the second stage.
MAIN OUTCOME MEASURES: Attending
emergency physicians assessed each patient
for standardized clinical variables and classi-
fied the need for radiography according to the
original (first stage) and the refined (second
stage) decision rules. The decision rules were
assessed for their ability to correctly identify
the criterion standard of fractures on ankle and
foot radiographic series. The original decision
rules were refined by univariate and recursive
partitioning analyses.
MAIN RESULTS: In the first stage, the original
decision rules were found to have sensitivities
of 1.0 (95% confidence interval [CI], 0.97 to 1.0)
for detecting 121 malleolar zone fractures, and
0.98 (95% CI, 0.88 to 1.0) for detecting 49 mid-
foot zone fractures. For interpretation of the
rules in 116 patients, kappa values were 0.56
for the ankle series rule and 0.69 for the foot

series rule. Recursive partitioning of 20 predic-
tor variables yielded refined decision rules for
ankle and foot radiographic series. In the sec-
ond stage, the refined rules proved to have
sensitivities of 1.0 (95% CI, 0.93 to 1.0) for 50
malleolar zone fractures, and 1.0 (95% CI, 0.83
to 1.0) for 19 midfoot zone fractures. The po-
tential reduction in radiography is estimated to
be 34% for the ankle series and 30% for the
foot series. The probability of fracture, if the
corresponding decision rule were “negative,”
is estimated to be 0% (95% CI, 0% to 0.8%) in
the ankle series, and 0% (95% CI, 0% to 0.4%)
in the foot series.
CONCLUSION: Refinement and validation
have shown the Ottawa ankle rules to be 100%
sensitive for fractures, to be reliable, and to
have the potential to allow physicians to safely
reduce the number of radiographs ordered in
patients with ankle injuries by one third. Field
trials will assess the feasibility of implementing
these rules into clinical practice (124). [Diagno-
sis; Validation; Updating]

Explanation
Abstracts provide key information that enables

readers to assess the methodology and relevance of a
study and give a summary of the findings. The abstract
may be all that is readily available and helps readers to
decide whether to read the full report. We recommend
including at least the study objectives (ideally sup-
ported by a brief statement of background or ratio-
nale), setting, participants, sample size (and number of
events), outcome, predictors, statistical analysis meth-
ods, results (for example, model performance and re-
gression coefficients), and conclusions. A structured
abstract is preferable, although requirements of spe-
cific journals vary.

The abstract should address the same attributes as
the title (item 1), including whether the study concerns
model development, model validation, or both; a diag-
nostic or prognostic model; the target population; and
the outcome to be predicted. For model development
studies, specifying all candidate predictors might not
be feasible if too many were studied. In these instances,
it may suffice to mention the total number considered
and summarize in broad categories indicating when
they were measured (for example, at history-taking and
physical examination). The results section should ide-
ally clarify the predictors included in the final model,
along with measures of the model's predictive perfor-
mance. This may not be necessary for complex models
with many predictors, or studies validating a previously
developed model in new data.

Informative abstracts and titles of prediction model
studies enable researchers to locate relevant studies
when conducting a literature search. A few search strat-
egies for retrieving clinical prediction models have
been published (125–127). They have recently been
tested and slightly modified by independent research-
ers, who concluded that they miss few clinical predic-
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tion model studies (although they are less good at find-
ing other types of prediction study) (128). Specific
search filters for finding prediction model studies in the
domain of primary care have also been developed
(129).

Introduction
Background and Objectives

Item 3a. Explain the medical context (including
whether diagnostic or prognostic) and rationale
for developing or validating the multivariable pre-
diction model, including references to existing
models. [D;V]

Examples

Confronted with acute infectious conjunctivitis
most general practitioners feel unable to dis-
criminate between a bacterial and a viral cause.
In practice more than 80% of such patients re-
ceive antibiotics. Hence in cases of acute infec-
tious conjunctivitis many unnecessary ocular
antibiotics are prescribed. . . . To select those
patients who might benefit most from antibi-
otic treatment the general practitioner needs
an informative diagnostic tool to determine a
bacterial cause. With such a tool antibiotic pre-
scriptions may be reduced and better tar-
geted. Most general practitioners make the
distinction between a bacterial cause and an-
other cause on the basis of signs and symp-
toms. Additional diagnostic investigations such
as a culture of the conjunctiva are seldom done
mostly because of the resulting diagnostic de-
lay. Can general practitioners actually differen-
tiate between bacterial and viral conjunctivitis
on the basis of signs and symptoms alone?
. . . A recently published systematic literature

search summed up the signs and symptoms
and found no evidence for these assertions.
This paper presents what seems to be the first
empirical study on the diagnostic informative-
ness of signs and symptoms in acute
infectious conjunctivitis (130). [Diagnosis;
Development]

In the search for a practical prognostic system
for patients with parotid carcinoma, we previ-
ously constructed a prognostic index based on
a Cox proportional hazards analysis in a source
population of 151 patients with parotid carci-
noma from the Netherlands Cancer Institute.
[The] Table . . . shows the pretreatment prog-
nostic index PS1, which combines information
available before surgery, and the post treat-
ment prognostic index PS2, which incorporates
information from the surgical specimen. For
each patient, the index sums the properly
weighted contributions of the important clini-

copathologic characteristics into a number cor-
responding to an estimated possibility of tu-
mor recurrence. These indices showed good
discrimination in the source population and in
an independent nationwide database of Dutch
patients with parotid carcinoma. According to
Justice et al, the next level of validation is to go
on an international level. . . . For this purpose,
an international database was constructed
from patients who were treated in Leuven and
Brussels (Belgium) and in Cologne (Germany),
where the prognostic variables needed to cal-
culate the indices were recorded, and predic-
tions were compared with outcomes. In this
way, we tried to achieve further clinical and sta-
tistical validation (131). [Prognosis; Validation]

Any revisions and updates to a risk prediction
model should be subject to continual evalua-
tion (validation) to show that its usefulness for
routine clinical practice has not deteriorated,
or indeed to show that its performance has im-
proved owing to refinements to the model. We
describe the results from an independent eval-
uation assessing the performance of QRISK2
2011 on a large dataset of general practice re-
cords in the United Kingdom, comparing its
performance with earlier versions of QRISK
and the NICE adjusted version of the Framing-
ham risk prediction model (117). [Prognosis;
Validation]

Explanation
Multivariable prediction models can serve multiple

purposes, so readers need a clear description of a mo-
del's rationale and potential use. Authors should de-
scribe the specific clinical context (such as decision) in
which the model would be used. For example, a diag-
nostic prediction model may be used to help decide on
the ordering of more invasive or burdensome tests in
certain patients, and a prognostic model may inform
patients with a certain condition about their future out-
come or help judge subsequent treatment possibilities.
This medical context and intended use of the model
provides the rationale for their choice of patients (in-
cluding setting) and to whom the results may be gen-
eralized, and what type of predictors would be avail-
able in this setting and therefore considered. The
choice of outcome is a critical factor determining the
clinical relevance of a model, and therefore the ratio-
nale for selecting a specific outcome should be given.
Preferably, outcomes and duration of follow-up
should be relevant to patients and clinical decision
making.

Problems may arise if more expansive outcome
definitions are used, thereby increasing the risk for la-
beling too many persons as high risk (132). A similar
problem exists in the diagnostic setting if an abnormal-
ity on a new sensitive marker or high-resolution image
becomes the new definition of disease, which may lead
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to overdiagnosis and overtreatment (132, 133). A de-
scription of the medical context should also indicate
any clinical decisions that may be informed by the pre-
dicted risk. Below are a few examples of the different
uses of multivariable prediction models for both diag-
nostic and prognostic purposes.

Potential clinical uses of multivariable diagnostic
models:

Decisions whether or not to order more invasive or
costly diagnostic tests, or to refer patients to secondary
care. Example: Ottawa rule for when to order radiogra-
phy in patients with ankle injury (134, 135).

Decisions whether a certain target condition can be
safely ruled out. Example: clinical decision rule and
D-dimer to exclude deep venous thrombosis or pulmo-
nary embolism (136).

Informing future parents about the likelihood that
their unborn baby has trisomy 21. Example: triple tests
during pregnancy (137).

Potential clinical uses of multivariable prognostic
models:

Inform “healthy” individuals about their 10-year risk
for cardiovascular disease. This information can be
used to change unhealthy lifestyles. Examples: Fra-
mingham risk score (138), QRISK2 (139), and SCORE
(140).

Inform patients diagnosed with a certain disease or
patients undergoing a particular surgical procedure
about their risk for having a poor outcome or compli-
cation, to decide on preemptive or therapeutic strate-
gies. Example: indication for thrombolytic therapy
based on 30-day mortality after an acute myocardial
infarction (141).

When developing a model, researchers should
mention, ideally on the basis of a literature review,
whether related models (for example, for the same or
similar intended use, participants, or outcomes) have
already been developed (47). External validation stud-
ies generate valuable information about the perfor-
mance of an existing, previously developed model in
new patients. Authors should clearly state the existing
model they were validating, citing the article, and state
or restate the (potential) clinical use of this model. If
other competing prediction models exist, authors
should indicate why they only evaluated the selected
model. Clearly, a comparative validation study (that is,
evaluating multiple competing models [48]) on the
same data set will generate additional information (47,
85). Any deliberate change in patient population, pre-
dictors, or outcomes in comparison with the study in
which the model was developed should be highlighted
(see also item 12), along with its rationale.

In a recent systematic review of external validation
studies, 7 of 45 (16%) did not cite the original study
developing the prediction model that was being evalu-
ated (122).

Item 3b. Specify the objectives, including
whether the study describes the development or
validation of the model or both. [D;V]

Examples

The aim of this study was to develop and vali-
date a clinical prediction rule in women pre-
senting with breast symptoms, so that a more
evidence based approach to referral—which
would include urgent referral under the 2 week
rule—could be implemented as part of clinical
practice guidance (142). [Diagnosis; Develop-
ment; Validation]

In this paper, we report on the estimation and
external validation of a new UK based paramet-
ric prognostic model for predicting long term
recurrence free survival for early breast cancer
patients. The model's performance is com-
pared with that of Nottingham Prognostic In-
dex and Adjuvant Online, and a scoring algo-
rithm and downloadable program to facilitate
its use are presented (143). [Prognosis; Devel-
opment; Validation]

Even though it is widely accepted that no pre-
diction model should be applied in practice
before being formally validated on its predic-
tive accuracy in new patients no study has pre-
viously performed a formal quantitative (exter-
nal) validation of these prediction models in an
independent patient population. Therefore we
first conducted a systematic review to identify
all existing prediction models for prolonged
ICU length of stay (PICULOS) after cardiac sur-
gery. Subsequently we validated the perfor-
mance of the identified models in a large inde-
pendent cohort of cardiac surgery patients
(46). [Prognosis; Validation]

Explanation
Study objectives are the specific aims or research

questions that will be addressed in the study. By clearly
specifying the objectives, often at the end of the intro-
duction, the authors will provide the reader with the
necessary background information to help critically ap-
praise the study. For prediction model studies, the ob-
jectives should specify the purpose of prediction (diag-
nostic or prognostic), the outcome or type of outcome
that is predicted, the setting and intended population
the model will be used for, and the type of predictors
that will be considered. Furthermore, authors should
state whether the report concerns the development of
a new model or the external validation of an existing
model, or both.

Methods
Source of Data

Item 4a. Describe the study design or source
of data (for example, randomized trial, cohort, or
registry data), separately for the development and
validation data sets, if applicable. [D;V]

RESEARCH AND REPORTING METHODS The TRIPOD Statement: Explanation and Elaboration

W12 Annals of Internal Medicine • Vol. 162 No. 1 • 6 January 2015 www.annals.org

Downloaded From: http://annals.org/ by a Oxford University User  on 01/06/2015



Examples

The population based sample used for this re-
port included 2489 men and 2856 women 30
to 74 years old at the time of their Framingham
Heart Study examination in 1971 to 1974. Par-
ticipants attended either the 11th examination
of the original Framingham cohort or the initial
examination of the Framingham Offspring
Study. Similar research protocols were used in
each study, and persons with overt coronary
heart disease at the baseline examination were
excluded (144). [Prognosis; Development]

Data from the multicentre, worldwide, clinical
trial (Action in Diabetes and Vascular disease:
preterax and diamicron MR controlled evalua-
tion) (ADVANCE) permit the derivation of new
equations for cardiovascular risk prediction in
people with diabetes. . . . ADVANCE was a fac-
torial randomized controlled trial of blood
pressure (perindopril indapamide versus pla-
cebo) and glucose control (gliclazide MR
based intensive intervention versus standard
care) on the incidence of microvascular and
macrovascular events among 11,140 high risk
individuals with type 2 diabetes . . . DIABHY-
CAR (The non insulin dependent diabetes, hy-
pertension, microalbuminuria or proteinuria,
cardiovascular events, and ramipril study) was
a clinical trial of ramipril among individuals
with type 2 diabetes conducted in 16 countries
between 1995 and 2001. Of the 4912 random-
ized participants, 3711 . . . were suitable for
use in validation. Definitions of cardiovascular
disease in DIABHYCAR were similar to those in
ADVANCE. . . . Predictors considered were age
at diagnosis of diabetes, duration of diagnosed
diabetes, sex, . . . and randomized treatments
(blood pressure lowering and glucose control
regimens) (145). [Prognosis; Development;
Validation]

We did a multicentre prospective validation
study in adults and an observational study in
children who presented with acute elbow in-
jury to five emergency departments in south-
west England UK. As the diagnostic accuracy of
the test had not been assessed in children we
did not think that an interventional study
was justified in this group (146). [Diagnosis;
Validation]

We conducted such large scale international
validation of the ADO index to determine how
well it predicts mortality for individual subjects
with chronic obstructive pulmonary disease
from diverse settings, and updated the index
as needed. Investigators from 10 chronic ob-

structive pulmonary disease and population
based cohort studies in Europe and the Amer-
icas agreed to collaborate in the International
chronic obstructive pulmonary disease Cohorts
Collaboration Working Group (147). [Progno-
sis; Validation; Updating]

Explanation
A variety of data sources or study designs—here

used as synonyms—can be used to develop or validate
a prediction model. Detailed description of the design,
how study participants were recruited and data col-
lected, provides relevant details about the quality of
the data, whether the proper statistical analyses have
been performed, and the generalizability of the predic-
tion model. The vulnerability for specific biases varies
between designs.

Diagnostic studies in principle study a cross-
sectional relationship between the diagnostic predic-
tors (patient characteristics and index test results) and
the presence or absence of the outcome (the target
condition of interest) (Box A). The natural design for
such studies is a cross-sectional study, in which a group
of patients with a certain characteristic is selected, usu-
ally defined as “suspected of having the target condi-
tion of interest” (148–151). There will often be an inter-
val between measurement of the predictors and the
outcome (reference standard). Ideally, this interval
should be as short as possible and without starting any
treatment within this period. Because of this short time
period, and because one selects a group of patients
with a similar characteristic (this is the definition of a
cohort), there is debate about whether to label these
studies “pure” cross-sectional studies or rather use the
terms “diagnostic” (cross-sectional) cohort studies or
“delayed” cross-sectional studies (152–154). Problems
can arise if the interval between measurement of the
predictors and of the outcome becomes too long, and
certainly when intervening treatments are started; the
disease status of some patients might change, thereby
destroying the cross-sectional relationship of interest.

For efficiency, in some diagnostic modeling studies
the reference standard is performed first, and the study
uses all the cases (patients with the target condition)
but a random sample of the noncases. Adjustment for
sampling frequency is necessary to obtain unbiased ab-
solute (diagnostic outcome) probabilities (152, 155–
157). Such alternative sampling designs become attrac-
tive in situations where outcome (target condition)
prevalence is low and the costs of measuring the pre-
dictors or index tests under study are high. A key issue
here is whether the cases and noncases (controls) are
representative of the cases and noncases that occur in
the population of interest, that is, individuals suspected
of having the target condition. A clear violation occurs
in studies that include differential selection of typical,
advanced cases and healthy controls (152, 155–157).
Such participant selection may lead to overstatements
about the clinical relevance of the study (158), and
many measure of predictive performance will often be
invalid (157).

The natural design of a prognostic study is a longi-
tudinal cohort study, which can be prospective or ret-
rospective (Box A) (1–3, 58, 103). Individuals enter the
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cohort on the basis of specific criteria, such as being
diagnosed with a specific condition, undergoing a spe-
cific operation, or being pregnant. This is often referred
to as T = 0, baseline, or start point (9). Subjects are then
followed over time to determine whether they develop
the outcome event of interest.

The preferred design is a prospective longitudinal
cohort study. There is full control for ensuring that all
relevant predictors and outcomes will be measured
(Figure 2) and that the best method for measuring each
predictor and outcome will be used, thereby minimiz-
ing the number of missing values and lost to follow-up.

In many studies, a model will be developed or val-
idated using a data set that was originally designed and
conducted for a different purpose. Although such a
study may originally have been a prospective longitu-
dinal cohort study, it may not have measured specific
predictors or may have measured some predictors less
well. Item 13b asks for detailed information on the
number of missing values in potential predictors, and
item 13a for patients lost to follow-up.

Randomized trials are a special subset of prospec-
tive longitudinal cohort studies, and can thus also be
used for developing or validating prognostic models.

Figure 2. Selection of predictors in a study of the development of a multivariable prediction model.

Available set of potentially relevant predictors
in current data set

Predictors in final
multivariable prediction model

All possible predictors

Predictors used during modeling

Using existing data set, e.g.:
Clinical trial
Observational cohort study
Routine care database/registry

Options
No further predictor selection
Predictor selection during modeling 
not using the predictor–outcome 
association, which may include:

Clinical reasoning
Literature review
Too many missing values
Redundancy/overlap in predictor 

information (e.g., principal 
component analysis, clustering)

Options
No further predictor selection
Predictor selection before modeling 
by examining the predictor–outcome 
association, which may include:

Removing predictors (e.g., based 
on P value or magnitude of 
regression coefficients)

Shrinking regression coefficients 
of selected predictors to zero 
(e.g., by lasso method)

Predictor selection
based on:

Clinical reasoning
Literature review
Money constraints

Prospective prediction model study
using dedicated data collection

Missing potentially
relevant predictors?
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However, authors should state how the intervention ef-
fect was accounted for (item 5c). There may be con-
cerns about the generalizability of a model developed
or validated by using data from a randomized trial, ow-
ing to (often) extensive exclusion criteria (1). One em-
pirical analysis found that prognostic effects of emerg-
ing cardiovascular biomarkers (added beyond the
traditional Framingham risk score) were stronger in
data sets derived from observational studies than in
data derived from randomized trials (159).

With international collaborations and data sharing
becoming more commonplace, individual participant
data from multiple studies are increasingly being used
to develop and validate prediction models (89, 147,
160). Similarly, large existing data sets (for example,
“big data” from national or international surveys or reg-
istries) are increasingly being used to develop and val-
idate prediction models (139, 161, 162). For both of
these data sources, data should be considered as clus-
tered, because participants originate from different
clusters (different cohorts, studies, hospitals, settings,
regions, or countries), requiring a weighted approach
when developing a prediction model. Recently, meta-
analytical approaches have been proposed to account
for such clustering of study participants (163–166). This
involves accounting for different case mix reflected by
different outcome prevalence (diagnosis) or incidence
(prognosis) across cohorts, data sets, studies, hospitals,
settings, regions, or countries, and thus accounting for
different baseline probabilities or hazards (for example,
by using random intercepts). But it also involves ac-
counting for different case mix reflected by different
predictor–outcome associations, by allowing for ran-
dom predictor weights (regression coefficients) (163–
167). Using individual participant data or other “big
data” sources, enhances the possibility of developing
and directly evaluating (externally validating) prediction
models across hospitals, countries, or settings (Figure
1, study type 2b), again accounting for potential differ-
ences in intercept and predictor weights (164, 166). Ex-
tensions to commonly used measures of model perfor-
mance to account for clustered data have also been
recently proposed (167–171).

For reasons of efficiency or costs, sampling of pa-
tients rather than using the full cohort can be applied.
Examples are case-cohort and nested case–control de-
signs (172). Accurate reporting on the way in which pa-
tients (subjects) were sampled is required, because the
sampling needs to be incorporated in the analysis to
allow for proper estimation of the absolute probabili-
ties of having or developing the outcome of interest (1,
103, 173–175). Selectively choosing or omitting partic-
ipants may cast doubt on the representativeness of the
sample to the population in which the model is to be
applied and affect the generalizability of the prediction
model.

The study design or source of data also provides
relevant information about the setting and original pur-
pose of collecting the data. The setting in combination
with the eligibility criteria (item 5b) will help the reader
to judge the generalizability of the model to the setting
in which the reader may wish to use it.

Recent systematic reviews of prediction model
studies have observed that studies often did not clearly
indicate whether the sample was representative of the
intended population, including whether all consecutive
participants were included (34, 59, 84, 93, 176).

Item 4b. Specify the key study dates, including
start of accrual; end of accrual; and, if applicable,
end of follow-up. [D;V]

Examples

This prospective temporal validation study in-
cluded all patients who were consecutively
treated from March 2007 to June 2007 in 19
phase I trials at the Drug Development Unit,
Royal Marsden Hospital (RMH), Sutton, United
Kingdom. . . . [A]ll patients were prospectively
observed until May 31, 2008 (177). [Prognosis;
Validation]

All consecutive patients presenting with ante-
rior chest pain (as a main or minor medical
complaint) over a three to nine week period
(median length, five weeks) from March to May
2001 were included. . . . Between October
2005 and July 2006, all attending patients with
anterior chest pain (aged 35 years and over;
n = 1249) were consecutively recruited to this
study by 74 participating GPs in the state of
Hesse, Germany. The recruitment period
lasted 12 weeks for each practice (178). [Diag-
nosis; Development; Validation]

The derivation cohort was 397 consecutive pa-
tients aged 18 years or over of both sexes who
were admitted to any of four internal medicine
wards at Donostia Hospital between 1 May and
30 June 2008 and we used no other exclusion
criteria. The following year between 1 May and
30 June 2009 we recruited the validation co-
hort on the same basis: 302 consecutive pa-
tients aged 18 or over of both sexes who were
admitted to any of the same four internal med-
icine wards at the hospital (179). [Prognosis;
Development]

Explanation
Reporting the start and end dates of the period in

which study participants were recruited places a study
in a historical context. Readers can deduce relevant in-
formation, such as available tests and treatments in this
period, and the state of the art of medical technologies
to measure certain predictors. These dates, in combi-
nation with the total number of participants, may also
indicate how selective enrolment was. Indeed, it is use-
ful to report the number of enrolled participants per
period (for example, per year); see item 13a.

As discussed in item 4a, time between predictor
and outcome measurement is short in most diagnostic
prediction studies. However, when a good reference
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standard does not exist, patients may be followed up to
obtain a more reliable assessment of whether they had
the target condition at the time the predictors were
measured. In these situations, authors should report
whether a maximum or minimum interval was allowed
between measurement of the predictors and the final
assessment to determine whether the target condition
was present or absent.

In prognostic modeling studies, the duration of
follow-up is critical when interpreting the performance
of the model (items 6a and 13a). Follow-up from inclu-
sion may be the same for all participants, in which case
the study duration should be specified. Often,
follow-up continues for all enrolled participants until
the study is closed on a specific date (which should be
reported). Efforts should then be made to establish par-
ticipant status at that closing date; events that occur
after that date are ignored.

Systematic reviews of prediction model studies
have observed that key study dates are not always re-
ported (43, 122, 176, 180). For example, in a systematic
review of 61 studies developing or validating prognos-
tic models for breast cancer, only 13 (12%) provided
full information on the dates of start and end of recruit-
ment and end of follow-up (43).

Participants
Item 5a. Specify key elements of the study set-

ting (e.g., primary care, secondary care, general
population), including number and location of
centers. [D;V]

Examples

We built on our previous risk prediction algo-
rithm (QRISK1) to develop a revised algo-

rithm . . . QRISK2. We conducted a prospective
cohort study in a large UK primary care
population using a similar method to our orig-
inal analysis. We used version 19 of the
QRESEARCH database (www.qresearch.org).
This is a large validated primary care electronic
database containing the health records of 11
million patients registered from 551 general
practices (139). [Prognosis; Development;
Validation]

See also Table 2.

Explanation
A detailed description of where and when study

participants were recruited is particularly important so
that others may judge the generalizability and useful-
ness of the models and to conduct further research (for
example, validating or implementation of the model).
“Where and when” refers not only to geographic loca-
tion and calendar time, but also in which setting the
participant data were collected (such as primary, sec-
ondary, tertiary, or emergency care, or general popula-
tion), and adult or pediatric care. One cannot simply
assume that prediction models can be directly trans-
ported from one type of setting or target population to
another (19, 26, 28, 33).

Different settings have a different case mix, which
commonly affects the generalizability and accuracy of
prediction models; see item 4a (182–187). “Case mix”
refers to the distribution of predictors, other relevant
participant or setting characteristics, and the outcome
prevalence (diagnosis) or incidence (prognosis), which
may lead to different predictor–outcome associations
potentially affecting the predictive accuracy of the
model. It is well known, for example, that the predictive

Table 2. Example Table: Reporting Key Study Characteristics [Diagnosis; Development; Validation]

Characteristic Swiss Population (n � 201)* US Population (n � 258)*

Data collection period December 1999 to February 2000 January to March 2002
Study design Prospective cohort Prospective cohort
Setting University primary care clinic that serves an urban

population of 150 000 in Lausanne, Switzerland
Emergency department or urgent care ambulatory patients in a large

tertiary care university hospital in San Francisco, California
Inclusion criteria Adult outpatients with influenza-like illness as

determined by the primary care physician
Consecutive adults with symptoms of an acute respiratory tract infection

(cough, sinus, pain, congestion/rhinorrhea, sore throat or fever)
developing in past 3 weeks

Outcome Presence of influenza A or B Presence of influenza A or B
Reference standard Culture PCR
Prevalence of

influenza
104 (52.8) 53 (20.5)

Men 101 (50) 103† (40)
Mean age (range), y 34.3 (17–86) 38.8 (18–90)
Fever 116 (58) 54 (21)
Cough 186 (93) 235 (91)
Sore throat 151 (75) 181 (70)
Myalgia 181 (90) 154 (60)
Rhinitis 163 (81) 185 (72)
Headache 169 (84) 190 (74)
Chills/sweating 166 (83) 158 (61)
Fatigue 184 (92) 197 (76)
Onset <48 hours 106 (33) 45 (17)

PCR = polymerase chain reaction.
From reference 181.
* Values are n (%) unless otherwise indicated.
† Out of 256 total patients.
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performance of models developed in secondary care is
usually lower when they are applied in a primary care
setting (21, 183, 188). This is perhaps simply because
primary or family care doctors selectively refer patients
to secondary or tertiary care, such that the latter care
populations show a narrower range of patient charac-
teristics, a larger fraction of patients in later disease
stages, and often higher outcome frequency (102, 189,
190).

Another setting difference is the transportability of
prediction models from adult to pediatric care (102).
For example, various prediction models have been de-
veloped to predict the risk for postoperative nausea
and vomiting in adults scheduled for surgery under
general anesthesia. When validated in children, the
models' predictive ability was substantially decreased
(191).

In general, models will be more generalizable
when the case mix of the new population is within the
case mix range of the development population (186).
However, as we describe under item 10e (see also Box
C and Table 3), one may adjust or update a previously
developed prediction model that is applied in another
setting to the local circumstances of the new setting to
improve the model transportability.

We recommend presenting a table summarizing
the key elements of the study characteristics for the de-
velopment and any validation sample (192), to provide
the reader insight into any differences in case mix and
its potential consequences (item 5b). In addition, for
validation studies, we suggest presenting a summary
table of both the development and validation samples.

A systematic review of 48 studies developing or
validating prognostic models for heart failure identified
10 studies (21%) failing to provide information on the
number of centers (180).

Item 5b. Describe eligibility criteria for partici-
pants. [D;V]

Examples

One hundred and ninety two patients with cu-
taneous lymphomas were evaluated at the De-
partments of Dermatology at the UMC Mann-
heim and the UMC Benjamin Franklin Berlin
from 1987 to 2002. Eighty six patients were di-
agnosed as having cutaneous T cell lymphoma
(CTCL) as defined by the European Organisa-
tion for Research and Treatment of Cancer
classification of cutaneous lymphomas, includ-
ing mycosis fungoides, Sezary Syndrome and
rare variants. . . . Patients with the rare variants
of CTCL, parapsoriasis, cutaneous pseudolym-
phomas and cutaneous B cell lymphomas were
excluded from the study. . . . Staging classifica-
tion was done by the TNM scheme of the my-
cosis fungoides Cooperative Group. A diagno-
sis of Sezary Syndrome was made in patients
with erythroderma and >1000 Sezary cells mm)
in the peripheral blood according to the
criteria of the International Society for Cutane-

ous Lymphomas (ISCL) (193). [Prognosis;
Development]

Inclusion criteria were age 12 years and above,
and injury sustained within 7 days or fewer.
The authors selected 12 as the cutoff age be-
cause the emergency department receives, in
the main, patients 12 years and above while
younger patients were seen at a neighboring
children's hospital about half a mile down the
road from our hospital. In this, we differed from
the original work by Stiell, who excluded pa-
tients less than 18 years of age. Exclusion crite-
ria were: pregnancy, altered mental state at the
time of consultation, patients who had been re-
ferred with an x ray study, revisits, multiply trau-
matized patients, and patients with isolated
skin injuries such as burns, abrasions, lacera-
tions, and puncture wounds (194). [Diagnosis;
Validation]

Explanation
Describing eligibility criteria is important to under-

stand the potential applicability, and thus generalizabil-

Table 3. Overview of Different Approaches for Updating
an Existing Prediction Model*

Method Updating Method Reason for Updating

0 No adjustment (the original
prediction model)

–

1 Adjustment of the intercept
(baseline risk/hazard)

Difference in the outcome
frequency (prevalence or
incidence) between
development and
validation sample

2 Method 1 + adjustment of
all predictor regression
coefficients by one overall
adjustment factor
(calibration slope)

The regression coefficients
or combination thereof of
the original model are
overfitted or underfitted

3 Method 2 + extra
adjustment of regression
coefficients for predictors
with different strength in
the validation sample
compared with the
development sample

As in method 2, and the
strength (regression
coefficient) of one or more
predictors may be different
in the validation sample

4 Method 2 + selection of
additional predictors (e.g.,
newly discovered
markers)

As in method 2, and one or
more potential predictors
were not included in the
original model, or a new
predictor may need to be
added

5 Reestimation of all
regression coefficients,
using the data of the
validation sample only. If
the development data set
is also available, both data
sets may be combined.

The strength of all predictors
may be different in the
validation sample, or the
validation sample is much
larger than the
development sample

6 Method 5 + selection of
additional predictors (e.g.
newly discovered
markers)

As in method 5, and one or
more potential predictors
were not included in the
original model, or a new
predictor may need to be
added

* Information from references 31, 290, 372, and 373.
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ity, of the prediction model. The selection process, de-
scribing who did or did not become a study participant,
has implications regarding to whom the study results
and predictions might be generalized.

For validation studies, it is useful to report whether
the eligibility criteria for those studied were similar to
or different from those used in the original derivation of
the model. In the example above (194), a multivariable
diagnostic prediction model to identify ankle fractures,
originally derived in Canada, was validated in Asia. The
authors described details of selection and contrasted
them with those used in the original development
study.

If some otherwise eligible participants were ex-
cluded because of missing data, this should be clearly
reported. Simply omitting participants owing to missing
data—either on predictors or outcome—and restricting
the analysis only to those with completely observed
predictor and outcome data may cause serious bias
(195–201). Bias can arise because data are often not
missing completely at random, but rather selectively
(item 9).

Item 5c. Give details of treatments received, if
relevant. [D;V]

Example

Data from the multi-centre, worldwide, clinical
trial (Action in Diabetes and Vascular disease:
preterax and diamicron-MR controlled evalua-
tion) (ADVANCE) permit the derivation of new
equations for cardiovascular risk prediction in
people with diabetes. . . . ADVANCE was a fac-
torial randomized controlled trial of blood
pressure (perindopril indapamide versus pla-
cebo) and glucose control (gliclazide MR
based intensive intervention versus standard
care) on the incidence of microvascular and
macrovascular events among 11,140 high risk
individuals with type 2 diabetes, recruited from
215 centres across 20 countries in Asia, Aus-
tralasia, Europe and Canada. . . . Predictors
considered were age at diagnosis of diabetes,
duration of diagnosed diabetes, sex, systolic
blood pressure, diastolic blood pressure,
mean arterial blood pressure, pulse pressure,
total cholesterol, high-density lipoprotein and
non high-density lipoprotein and triglycerides,
body mass index, waist circumference, Predic-
tors waist to hip ratio, blood pressure lowering
medication (i.e. treated hypertension), statin
use, current smoking, retinopathy, atrial fibrilla-
tion (past or present), logarithmically trans-
formed urinary albumin/creatinine ratio (ACR)
and serum creatinine (Scr), haemoglobin A1c
(HbA1c), fasting blood glucose and random-
ized treatments (blood pressure lowering and
glucose control regimens) (145). [Prognosis;
Development; Validation]

Explanation
Cohorts for studying prognosis are defined by

some presenting health state (202). In many prognostic
studies, the participants have received preventive or
curative interventions, either before or at the start of
the follow-up period, which may influence their prog-
nosis. An effective treatment will typically improve their
prognosis, leading to a reduced probability of the out-
come (203).

Developing a “pure baseline” prognostic model for
predicting future outcomes of participants in a particu-
lar health state who have not been exposed to treat-
ment is rarely possible. Frequently, participants will
have received some treatment. Ideally, either all study
participants receive the same treatment, such as a sur-
gical procedure, or the treatment is chosen at random,
as when prognostic models are based on randomized
trial data; see item 4a (1, 204). Some prognostic mod-
els are explicitly developed and validated for patients
receiving a particular intervention (205), but even here,
there may be variation in co-interventions.

When randomized trial data are used, separate
prognostic models can be fitted to those receiving the
different interventions, especially in the presence of an
effective intervention. Treatment could instead be in-
cluded as a predictor in a model developed from
all participants (item 7a); interactions between
treatment and other predictors (item 10b) may be stud-
ied to allow for different predictions under different
treatment strategies (1, 4). The focus here is not on the
preventive or therapeutic effects of the intervention,
but on their independent contribution to the outcome
prediction. In many cases, however, the predictive ef-
fect of interventions is rather small compared with the
important predictors, such as age, sex, and disease
stage (1), so that treatment is excluded from the mod-
eling or gets omitted during the predictor selection
process.

In nonrandomized studies, not only is there varia-
tion in treatments received, but also a serious concern
is that treatment choices for individuals may well have
been influenced by the same predictors that are in-
cluded in the statistical modeling (206). As with ran-
domized trial data, treatment can still be considered
as a predictor in the modeling, but the effect on
the prediction model of treatment being influenced by
other predictors cannot easily be judged. The
preceding comments relate to treatments received be-
fore the start of the follow-up period. Treatments re-
ceived at later times require very sophisticated models
that are seldom applied in prediction model studies
(207).

A rather different situation is when current treat-
ment is used as a proxy for other underlying predictors.
Examples include the use of antihypertensive or
cholesterol-lowering medication as a proxy for hyper-
tension or hypercholesterolemia, respectively, in car-
diovascular risk models (17, 208). The consequences of
this approach on the performance of prediction models
is not yet fully understood.

In view of the above considerations, it is important
for both developing and validating a prediction model
to know which interventions the study participants

RESEARCH AND REPORTING METHODS The TRIPOD Statement: Explanation and Elaboration

W18 Annals of Internal Medicine • Vol. 162 No. 1 • 6 January 2015 www.annals.org

Downloaded From: http://annals.org/ by a Oxford University User  on 01/06/2015



received that might have modified the probability for
the outcome (203) (item 13b).

The issue of treatments is less relevant in most di-
agnostic prediction model studies, because these stud-
ies have a cross-sectional design in which the predic-
tors and outcome are recorded at the same time (Box
A). Sometimes, however, there is some interval be-
tween the predictor and outcome assessment (for ex-
ample, when the outcome measure is based in part on
follow-up information [209]). Then, any treatments re-
ceived between the moment of prediction and out-
come measurement represent relevant information and
should be reported.

A recent review of 21 cardiovascular risk scores
found that outcome-modifying interventions were not
accounted for and that reporting of prior treatments
was incomplete (203).

Outcome
Item 6a. Clearly define the outcome that is pre-

dicted by the prediction model, including how and
when assessed. [D;V]

Examples

Outcomes of interest were any death, coronary
heart disease related death, and coronary
heart disease events. To identify these out-
comes, cohort participants were followed over
time using a variety of methods, including an-
nual telephone interviews, triennial field center
examinations, surveillance at ARIC community
hospitals, review of death certificates, physi-
cian questionnaires, coroner/medical examiner
reports, and informant interviews. Follow up
began at enrollment (1987 to 1989) and con-
tinued through December 31, 2000. Fatal cor-
onary heart disease included hospitalized and
nonhospitalized deaths associated with coro-
nary heart disease. A coronary heart disease
event was defined as hospitalized definite or
probable myocardial infarction, fatal coronary
heart disease, cardiac procedure (coronary
artery bypass graft, coronary angioplasty), or
the presence of serial electrocardiographic
changes across triennial cohort examinations.
Event classification has been described in
detail elsewhere [ref] (210). [Prognosis;
Development]

Definite urinary tract infection was defined as
≥108 colony forming units (cfu) per litre of a
single type of organism in a voided sample
≥107 cfu/L of a single organism in a catheter
sample or any growth of a single organism in a
suprapubic bladder tap sample. Probable uri-
nary tract infection was defined as ≥107 cfu/L
of a single organism in a voided sample ≥106

cfu/L of a single organism in a catheter sample

≥108 cfu/L of two organisms in a voided
sample or ≥107 cfu/L of two organisms from a
catheter sample (211). [Diagnosis; Develop-
ment; Validation]

Patient charts and physician records were re-
viewed to determine clinical outcome. Patients
generally were seen postoperatively at least
every 3–4 months for the first year, semi annu-
ally for the second and third years, and annu-
ally thereafter. Follow up examinations in-
cluded radiological imaging with computed
tomography in all patients. In addition to phys-
ical examination with laboratory testing, intra-
venous pyelography, cystoscopy, urine cytol-
ogy, urethral washings and bone scintigraphy
were carried out if indicated. Local recurrence
was defined as recurrence in the surgical bed,
distant as recurrence at distant organs. Clinical
outcomes were measured from the date of cys-
tectomy to the date of first documented recur-
rence at computed tomography, the date of
death, or the date of last follow up when the
patient had not experienced disease recur-
rence (212). [Prognosis; Development]

Breast Cancer Ascertainment: Incident diagno-
ses of breast cancer were ascertained by self-
report on biennial follow up questionnaires
from 1997 to 2005. We learned of deaths from
family members, the US Postal Service, and the
National Death Index. We identified 1084 inci-
dent breast cancers, and 1007 (93%) were con-
firmed by medical record or by cancer registry
data from 24 states in which 96% of partici-
pants resided at baseline (213). [Prognosis;
Validation]

Explanation
For diagnostic models, the outcome is the pres-

ence or absence of a specific target condition at T0
(Box A). This diagnostic outcome is determined using a
so-called reference standard, which should be the best
available and well-accepted method for establishing
the presence or absence of that condition (214). The
rationale for the choice of reference standard should
be stated. The reference standard can take many forms
and may be a single test, a combination of tests, or
some other method including a consensus based ap-
proach using an expert or outcome committee. Refer-
ence standard tests be laboratory, radiology, arthros-
copy, angiography, or pathology assessments.

If relevant, blood or urine sampling methods, lab-
oratory and imaging methods, technology, and defini-
tions should be specified, including any cut-offs that
were used to define the presence (or severity) of the
target condition, as should rules to combine test results
(composite reference standard) to establish the diag-
nostic outcome (215–217). Reasons for not using stan-
dard definitions and thresholds should be specified. If
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multiple outcome examiners were used (such as when
using a consensus-based outcome committee), the
method for establishing the final diagnosis (for exam-
ple, majority vote) should be described (215, 216).

In diagnostic modeling studies, the timing between
assessment of the outcome relative to the assessment
of the predictors should be specified, because of the
potential for bias resulting from a change in the under-
lying condition since the predictor assessments (Box
A). Furthermore, the order in which predictors and out-
come were assessed should be explicitly reported (see
also items 6b and 7b on the potential for bias in rela-
tion to nonblind assessments).

Ideally, the diagnostic outcome is verified for all
participants using the same reference standard. This is
not always possible. For example, it may be deemed
unethical to subject patients to an invasive reference
standard unless they have a positive result on 1 or more
index tests. Two situations may then occur: partial ver-
ification, when outcome data are completely missing
(item 9) for the subset of participants for whom there is
no reference standard result, and differential verifica-
tion, when patients who are not referred to the pre-
ferred reference standard are assessed using an alter-
native reference standard of differing, usually lower,
accuracy (218, 219).

For instance, in cancer detection studies, pathol-
ogy (reference standard) results are likely to be avail-
able only for those participants who have some positive
index test. For the remaining participants, the alterna-
tive reference standard may be a period of follow-up
that is long enough for cancers present at the time of
index test measurement to become apparent (delayed
verification), but not long enough for new incident can-
cers. Rules and procedures for partially or differentially
verifying the outcome should be well described to al-
low assessment of the potential for so-called partial and
differential verification bias (156, 218–220), and meth-
ods adjusting for these verification biases may be con-
sidered (219).

For prognostic models, common outcomes include
death (from any cause or cause specific), nonfatal com-
plications or events (for example, myocardial infarction,
cancer recurrence, disease progression, or disease on-
set), and patient-centered outcomes (such as symp-
toms, functional status, and quality of life) (2). Combi-
nations of outcomes are also used. For instance, events
of interest for disease-free survival in cancer studies
may include local recurrence, regional disease, distant
metastases, and death (whichever occurs first) (221).

All outcomes should be defined unambiguously. If
standard definitions are used (for example, Interna-
tional Classification of Diseases [ICD] codes), this
should be stated and referenced, as well as any varia-
tions. Technical details provided in a study protocol or
previous papers should be clearly referenced and ide-
ally made available.

Prognostic studies follow participants over a period
of time and document when the outcome occurs after
the prognostic time origin (T0) (for example, the date of
diagnosis or surgery; see Box A). Some studies assess
all participants on their outcome status within a fixed
period (for example, overall survival) and often at pre-

specified time points during follow-up (for example, 5-
or 10-year cardiovascular disease risk); these time
points should be clearly reported (222). Similarly, the
frequency of outcome assessment during follow-up
should also be clearly reported.

The data sources used to identify the occurrence of
the outcomes, or loss to follow-up, should be specified.
Examples include death registry data, hospital records,
cancer registry data, clinical assessments, scans, or lab-
oratory tests. For such outcomes as cause-specific mor-
tality, the process by which cause of death was as-
signed should be clearly explained (for example,
adjudication or end point committees). The composi-
tion of such committees and expertise of members
should also be reported in brief (216).

A recent review of 47 studies reporting the devel-
opment of prognostic models in cancer concluded that
outcomes were poorly defined in 40% of studies (54). In
30%, it was unclear whether “death” referred to a can-
cer death or death from any cause. There was also in-
consistency regarding which events were included in
the definition of disease-free survival.

Item 6b. Report any actions to blind assess-
ment of the outcome to be predicted. [D;V]

Examples

All probable cases of serious bacterial infection
were reviewed by a final diagnosis committee
composed of two specialist paediatricians (with
experience in paediatrics infectious disease
and respiratory medicine) and in cases of
pneumonia a radiologist. The presence or ab-
sence of bacterial infection [outcome] was de-
cided blinded to clinical information [predic-
tors under study] and based on consensus
(211). [Diagnosis; Development; Validation]

Liver biopsies were obtained with an 18 gauge
or larger needle with a minimum of 5 portal
tracts and were routinely stained with
hematoxylin-eosin and trichrome stains. Biop-
sies were interpreted according to the scoring
schema developed by the METAVIR group by
2 expert liver pathologists . . . who were
blinded to patient clinical characteristics and
serum measurements. Thirty biopsies were
scored by both pathologists, and interobserver
agreement was calculated by use of � statistics
(223). [Diagnosis; Development; Validation]

The primary outcome [acute myocardial infarc-
tion coronary revascularization or death of car-
diac or unknown cause within 30 days] was
ascertained by investigators blinded to the
predictor variables. If a diagnosis could not be
assigned a cardiologist . . . reviewed all the
clinical data and assigned an adjudicated out-
come diagnosis. All positive and 10% of ran-
domly selected negative outcomes were con-
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firmed by a second coinvestigator blinded to
the standardized data collection forms. Dis-
agreements were resolved by consensus (224).
[Prognosis; Development]

Explanation
In prediction model studies, the outcome is ideally

assessed while blinded to information about the pre-
dictors. The predictors may otherwise influence the
outcome assessment, leading to a biased estimation of
the association between predictors and outcome (148,
209, 225, 226). This risk is clearly less for objective out-
comes, such as death from any cause or cesarean sec-
tion. However, it is more relevant for outcome assess-
ments requiring interpretation, such as cause-specific
death.

Some outcomes are inherently difficult to assess or
lack an established reference standard. Researchers
may then explicitly want to use all available information
for each patient (including information from predictors)
to determine whether the outcome is indeed present or
absent. In diagnostic research, this approach is known
as consensus diagnosis, and adjudication or end-point
committees are examples from prognostic and inter-
vention research (item 6a) (149). If the explicit aim is to
assess the incremental value of a particular predictor or
comparing the performance of competing models (for
example, when validating multiple models), the impor-
tance of blinded outcome assessment increases to pre-
vent overestimation of a predictor's incremental value
or to prevent biased preference for one model to
another.

Researchers thus should carefully consider and
clearly report which information was available to the
assessors of the outcome and report any specific ac-
tions for blinding of the outcome assessment, if appro-
priate. However, systematic reviews have frequently re-
ported a lack of information when trying to assess
whether there was blind assessment of the outcome
(34, 227).

Predictors
Item 7a. Clearly define all predictors used in

developing the multivariable prediction model, in-
cluding how and when they were measured. [D;V]

Examples

The following data were extracted for each pa-
tient: gender, aspartate aminotransferase in
IU/L, alanine aminotransferase in IU/L, aspar-
tate aminotransferase/alanine aminotransfer-
ase ratio, total bilirubin (mg/dl), albumin (g/dl),
transferrin saturation (%), mean corpuscular
volume (μm3), platelet count ( × 103/mm3), and
prothrombin time(s). . . . All laboratory tests
were performed within 90 days before liver bi-
opsy. In the case of repeated test, the results
closest to the time of the biopsy were used. No
data obtained after the biopsy were used
(228). [Diagnosis; Development]

Forty three potential candidate variables in ad-
dition to age and gender were considered for
inclusion in the AMI [acute myocardial infarc-
tion] mortality prediction rules. . . . These can-
didate variables were taken from a list of risk
factors used to develop previous report cards
in the California Hospital Outcomes Project
and Pennsylvania Health Care Cost Contain-
ment Council AMI “report card” projects. Each
of these comorbidities was created using ap-
propriate ICD 9 codes from the 15 secondary
diagnosis fields in OMID. The Ontario dis-
charge data are based on ICD 9 codes rather
than ICD 9 CM codes used in the U.S., so the
U.S. codes were truncated. Some risk factors
used in these two projects do not have an ICD
9 coding analog (e.g., infarct subtype, race)
and therefore were not included in our analy-
sis. The frequency of each of these 43 comor-
bidities was calculated, and any comorbidity
with a prevalence of <1% was excluded from
further analysis. Comorbidities that the authors
felt were not clinically plausible predictors of
AMI mortality were also excluded (185). [Prog-
nosis; Development; Validation]

Each screening round consisted of two visits to
an outpatient department separated by ap-
proximately 3 weeks. Participants filled out a
questionnaire on demographics, cardiovascu-
lar and renal disease history, smoking status,
and the use of oral antidiabetic, antihyperten-
sive, and lipid lowering drugs. Information on
drug use was completed with data from com-
munity pharmacies, including information on
class of antihypertensive medication. . . . On
the first and second visits, blood pressure was
measured in the right arm every minute for 10
and 8 minutes, respectively, by an automatic
Dinamap XL Model 9300 series device (John-
son & Johnson Medical Inc., Tampa, FL). For
systolic and diastolic BP, the mean of the last
two recordings from each of the 2 visit days of
a screening round was used. Anthropometrical
measurements were performed, and fasting
blood samples were taken. Concentrations of
total cholesterol and plasma glucose were
measured using standard methods. Serum cre-
atinine was measured by dry chemistry (East-
man Kodak, Rochester, NY), with intra assay co-
efficient of variation of 0.9% and interassay
coefficient of variation of 2.9%. eGFR [esti-
mated glomerular filtration rate] was estimated
using the Modification of Diet in Renal Disease
(MDRD) study equation, taking into account
gender, age, race, and serum creatinine. In ad-
dition, participants collected urine for two con-
secutive periods of 24 hours. Urinary albumin
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concentration was determined by nephelome-
try (Dade Behring Diagnostic, Marburg, Ger-
many), and UAE [urinary albumin excretion]
was given as the mean of the two 24 hour uri-
nary excretions. As a proxy for dietary sodium
and protein intake, we used the 24 hour uri-
nary excretion of sodium and urea, respectively
(229). [Prognosis; Development]

Explanation
Predictors are typically obtained from participant

demographic characteristics, medical history, physical
examination, disease characteristics, test results, and
previous treatment (1). Predictors should be fully de-
fined, providing the units of measurement for any con-
tinuous predictors and all the categories for any cate-
gorical predictors (including whether categories have
been combined). This is to ensure that readers and
other investigators can potentially replicate the study
and, more important, validate or implement the predic-
tion model. If applicable, relevant sampling, laboratory
and imaging methods should be specified, including
any cut-offs that were used to define the presence (or
severity) of a specific predictor, or rules to combine
predictors (for example, mean blood pressure).

Authors should also explain how and when the pre-
dictors were measured. All predictors should be mea-
sured before or at the study time origin and known at
the moment the model is intended to be used (1, 230,
231). Blood or tissue samples collected at or before the
study time origin may be analyzed later; the important
issue is when the samples were obtained and the pre-
dictors being used. Predictors measured after the time
origin may be more appropriately examined as out-
comes and not predictors unless time-dependent
methods are used (232). However, statistical methods
for handling predictors measured during follow-up
(233, 234) are seldom used in prediction model stud-
ies. Predictor measurement methods (including assay
and laboratory measurement methods) should be re-
ported in a complete and transparent manner, with the
level of detail that would enable it to be reproduced
and evaluate the generalizability of the prediction
model that includes such predictors.

In many studies developing prediction models, a
large number of predictors are collected and available
for statistical analysis (Figure 2). However, the larger
the number of available predictors, the greater the
chance of erroneously selecting weak and uninforma-
tive predictors in the final model, leading to so-called
model overfitting and optimism (particularly in small
data sets); see item 8. Moreover, smaller models are
easier to apply in clinical practice than larger models.
Reducing the number of available predictors before or
during the analysis is therefore often necessary (2, 235);
see item 10b. Reasons for omitting any available pre-
dictors from the set of predictors used in the modeling
should be clearly reported (Figure 2).

Recent systematic reviews have highlighted fre-
quent insufficient reporting to clearly identify all avail-
able predictors, the total number of predictors ana-
lyzed, and how and when they were selected (34, 43,
45, 53, 54, 73, 74, 80, 81, 87, 182). In a review of 29

prediction models in reproductive medicine, 34% of
studies failed to provide an adequate description of the
predictors (80).

Item 7b. Report any actions to blind assess-
ment of predictors for the outcome and other pre-
dictors. [D;V]

Examples

A single investigator blinded to clinical data
and echocardiographic measurements per-
formed the quantitative magnetic resonance
image analyses. [The aim was to specifically
quantify the incremental diagnostic value of
magnetic resonance beyond clinical data to in-
clude or exclude heart failure] (236). [Diagno-
sis; Development; Incremental value]

Blinded to [other] predictor variables and pa-
tient outcome [a combination of nonfatal and
fatal cardiovascular disease and overall mortal-
ity within 30 days of chest pain onset], 2 board
certified emergency physicians . . . classified
all electrocardiograms [one of the specific
predictors under study] with a structured
standardized format . . . (224). [Prognosis;
Development]

Investigators, blinded to both predictor vari-
ables and patient outcome, reviewed and
classified all electrocardiograms in a structured
format according to current standardized re-
porting guidelines. Two investigators blinded
to the standardized data collection forms as-
certained outcomes. The investigators were
provided the results of all laboratory values, ra-
diographic imaging, cardiac stress testing, and
cardiac catheterization findings, as well as in-
formation obtained during the 30 day follow
up phone call (237). [Diagnosis; Validation]

Explanation
Assessment of predictors may be influenced if as-

sessors are not blinded to other observed information,
either the outcome or other predictors (1, 225, 238–
240). In a similar manner to blind outcome assessment
(item 6b), the need for blind assessment of predictors is
important, particularly those predictors that require
subjective judgment and assessment, such as imaging,
electrophysiology, and pathology results, and not so
much for such predictors as age, sex, or quantitative
laboratory values that are largely independent of ob-
server interpretation.

Blinding to Outcome Information
Assessment of predictors should always be done

without knowledge of the participant's outcome.
Knowledge of the outcome will indirectly be included
in or will contaminate the predictor assessment,
thereby artificially increasing the association between
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the predictor and outcome (1, 225, 239). Blinding pre-
dictor assessors for outcome information is inherent in
follow-up studies for which outcomes are by design
measured after the predictors, as is common for prog-
nostic research. Potential bias due to predictor assess-
ments contaminated by outcome knowledge, thus no-
tably occurs in case–control studies, and in studies with
a cross-sectional design in which predictors and out-
comes are assessed close in time (225). Hence, this bias
is more likely to occur in diagnostic modeling studies. It
should thus be explicitly stated whether any outcome
information was available when interpreting results of
predictors (or index tests).

Blinding to Other Predictor Information
Assessors of predictors requiring interpretation

may also be provided with other information (for exam-
ple, prior information obtained during assessment of
medical history or physical examination). Unlike blind-
ing for the outcome information when assessing pre-
dictors, blinding for information of other predictors is
not per se good or bad. The appropriateness depends
on the research question and the potential clinical ap-
plication of the specific predictors (209, 225, 226). In-
terpretation of subsequent predictors with knowledge
of prior predictor information may be specifically de-
signed, if in daily practice these subsequent predictors
are always interpreted in view of this prior information.
For example, predictors from additional imaging or
electrophysiology measurements are commonly inter-
preted with knowledge of results from history-taking
and physical examination.

Also, if the research purpose is to quantify the in-
cremental value of a specific predictor to predictors
that are in practice known anyhow, blinding the asses-
sor of the former to the latter may be unwarranted.
However, if a research purpose is to quantify whether a
particular predictor or test may replace another predic-
tor or test (for example, whether positron emission to-
mography–computed tomography may replace tradi-
tional scanning for the detection of cancer lesions in
the lungs), mutually blinding the observers of both for
each others' results is indicated to prevent contamina-
tion in both interpretations (225, 239). Nonblinding is
likely to make both readings, and thus results, become
more alike.

It should therefore be reported which predictor as-
sessments, if any, were blinded to other predictor infor-
mation, in relation to the study aim and where and how
the predictors in the model will be used in practice.

Numerous systematic reviews have shown that
blind assessment of predictors is either not carried out
or not reported (3, 58, 67, 69, 95, 241). For example,
only 47% of 137 studies describing the development
prediction models in pediatrics explicitly reported
blinding of the assessment of predictors.
Sample Size

Item 8. Explain how the study size was arrived
at. [D;V]

Examples

We estimated the sample size according to the
precision of the sensitivity of the derived deci-

sion rule. As with previous decision rule studies
we prespecified 120 outcome events to derive
a rule that is 100% sensitive with a lower 95%
confidence limit of 97.0% and to have the
greatest utility for practicing emergency physi-
cians we aimed to include at least 120 out-
come events occurring outside the emergency
department (in hospital or after emergency de-
partment discharge). Review of quality data
from the Ottawa hospital indicated that 10% of
patients who presented to the emergency de-
partment with chest pain would meet outcome
criteria within 30 days. We estimated that half
of these events would occur after hospital ad-
mission or emergency department discharge.
The a priori sample size was estimated to be
2400 patients (224). [Diagnosis; Development]

Our sample size calculation is based on our pri-
mary objective (i.e., to determine if preopera-
tive coronary computed tomography angio-
graph has additional predictive value beyond
clinical variables). Of our two objectives, this
objective requires the largest number of pa-
tients to ensure the stability of the prediction
model. . . . On the basis of the VISION Pilot
Study and a previous non-invasive cardiac test-
ing study that we undertook in a similar surgi-
cal population, we expect a 6% event rate for
major perioperative cardiac events in this
study. Table 2 presents the various sample
sizes needed to test four variables in a multi-
variable analysis based upon various event
rates and the required number of events per
variable. As the table indicates, if our event
rate is 6% we will need 1000 patients to
achieve stable estimates. If our event rate is
4%, we may need up to 1500 patients. We are
targeting a sample size of 1500 patients but
this may change depending on our event
rate at 1000 patients (242). [Prognosis;
Development]

All available data on the database were used
to maximise the power and generalisability of
the results (243). [Diagnosis; Development]

We did not calculate formal sample size calcu-
lations because all the cohort studies are ongo-
ing studies. Also there are no generally ac-
cepted approaches to estimate the sample size
requirements for derivation and validation
studies of risk prediction models. Some have
suggested having at least 10 events per candi-
date variable for the derivation of a model and
at least 100 events for validation studies. Since
many studies to develop and validate predic-
tion models are small a potential solution is to
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have large scale collaborations as ours to de-
rive stable estimates from regression models
that are likely to generalize to other popula-
tions. Our sample and the number of events far
exceeds all approaches for determining sam-
ples sizes and therefore is expected to provide
estimates that are very robust (147). [Progno-
sis; Validation]

We calculated the study sample size needed to
validate the clinical prediction rule according
to a requirement of 100 patients with the out-
come of interest (any intra-abdominal injury
present), which is supported by statistical esti-
mates described previously for external valida-
tion of clinical prediction rules. In accordance
with our previous work, we estimated the en-
rolled sample would have a prevalence rate of
intra-abdominal injury of 10%, and thus the to-
tal needed sample size was calculated at 1,000
patients (244). [Diagnosis; Validation]

Explanation
Although there is a consensus on the importance

of having an adequate sample size for developing a
prediction model, how to determine what counts as
“adequate” is not clear. As for all medical research, a
larger sample size yields more precise results. In the
absence of bias, larger samples also yield more reliable
findings. Crucially, in prediction studies (development
and validation), the number of outcome events dictates
the effective sample size; for a binary or time-to-event
outcome, the effective sample size is the smaller of the
2 outcome frequencies. A large sample size, in terms of
the number of individuals, may be inadequate if few
individuals have the actual outcome.

Often, however, a data set may already be readily
available with measurements on potential predictors
and outcomes from an entire large cohort, and it would
make sense to use the entire data set, regardless of
whether it meets specific sample size calculations. If so,
such circumstances should be clearly indicated rather
than try to justify the sample size of the data set on the
basis of arbitrary post hoc sample size calculations.

Development Study
As discussed under item 10b, a model's perfor-

mance is likely to be overestimated when it is devel-
oped and assessed for its predictive accuracy on the
same data set (23). That problem will be greatest with
small sample sizes (25, 32, 112). Although the amount
of optimism in the model can be estimated and ad-
justed for using internal validation and shrinkage tech-
niques (discussed in item 10b), it is better to have a
large sample in the first place. These concerns apply
even when no predictor selection will be performed.
They are far greater, however, when the predictors in
the model will be selected from a large number of
available predictors (Figure 2), especially when there
are no strong predictors. With a small sample, there will

be an increased risk for selecting spurious predictors
(overfitting; item 10b) and an increased risk for failing
to include important predictors (underfitting) (25, 26,
32, 112).

On the basis of some empirical investigations (245,
246) a rule of thumb for sample size was suggested that
has been quite widely adopted. The rule is to have at
least 10 outcome events per variable (EPV), or more
precisely, per parameter estimated. Others, however,
have suggested that the value of 10 is too strict (247) or
indeed too lax (25, 32, 248, 249). In addition, it may be
that the EPV is not the best basis for making these judg-
ments (250). In principle, the sample size could be cho-
sen instead to allow certain metrics of model perfor-
mance to be estimated with a given precision.
Measures that can be examined in this way include the
c-index, R2, Brier score, sensitivity and specificity, and
many others (251–253).

In practice, researchers are often restricted to using
an available data set. Such measures as EPV are often
then just descriptive; however, the number of predic-
tors analyzed may be reduced to control the EPV (Box
C). Only for a planned prospective prediction model
development study will the sample size be predeter-
mined on statistical grounds, on the basis of the ap-
proaches mentioned above.

Authors should explain how the sample size was
determined. If it is based on statistical considerations,
these should be detailed. Frequently, sample size will
be determined by practical considerations, such as
time, availability of existing data, or cost. In these in-
stances, it is helpful to discuss the adequacy of the sam-
ple size in relation to the number of predictors under
study or the primary performance measures.

Validation Study
A validation study has a specific goal: quantifying

the performance of an existing model in other data
(Box C and Figure 1). Sample size requirements for val-
idation studies are not well understood, and there is a
dearth of empirical evidence to guide investigators.
Sample size is therefore often determined by the avail-
able data, but in some cases it is possible to choose
sample size on statistical grounds.

The limited empirical evidence to support investi-
gators in guiding their sample size choice for validation
studies suggests a minimum of 100 events and 100
nonevents (112, 254), whereas more than 250 events
have been suggested as preferable (2). However, these
suggestions have been based on limited simulation
studies adopting a statistical hypothesis testing frame-
work. Possible considerations include hypothesis test-
ing (for example, test whether the calibration slope is
<1, or a prespecified reduction in the c-index), or pref-
erably a focus on the precision and accuracy of the per-
formance measures in the new data.

Numerous systematic reviews have observed that
prediction model studies, both development and
validation studies, frequently provided no rationale for
the sample size or any mention of overfitting (34, 54,
255).
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Missing Data
Item 9. Describe how missing data were han-

dled (for example, complete-case analysis, single
imputation, multiple imputation), with details of
any imputation method. [D;V]

Examples

We assumed missing data occurred at random
depending on the clinical variables and the re-
sults of computed tomography based coronary
angiography and performed multiple imputa-
tions using chained equations. Missing values
were predicted on the basis of all other predic-
tors considered the results of computed to-
mography based coronary angiography as well
as the outcome. We created 20 datasets with
identical known information but with differ-
ences in imputed values reflecting the uncer-
tainty associated with imputations. In total 667
(2%) clinical data items were imputed. In our
study only a minority of patients underwent
catheter based coronary angiography. An anal-
ysis restricted to patients who underwent cath-
eter based coronary angiography could have
been influenced by verification bias. Therefore
we imputed data for catheter based coronary
angiography by using the computed tomogra-
phy based procedure as an auxiliary variable in
addition to all other predictors. Results for the
two procedures correlate well together espe-
cially for negative results of computed tomog-
raphy based coronary angiography. This
strong correlation was confirmed in the 1609
patients who underwent both procedures
(Pearson r = 0.72). Since its data were used for
imputation the computed tomography based
procedure was not included as a predictor in
the prediction models. Our approach was sim-
ilar to using the results of computed tomogra-
phy based coronary angiography as the out-
come variable when the catheter based
procedure was not performed (which was ex-
plored in a sensitivity analysis). However this
approach is more sophisticated because it also
takes into account other predictors and the un-
certainty surrounding the imputed values. We
imputed 3615 (64%) outcome values for cath-
eter based coronary angiography. Multiple im-
putations were performed using Stata/SE 11
(StataCorp) (256). [Diagnosis; Development]

If an outcome was missing, the patient data
were excluded from the analysis. Multiple im-
putation was used to address missingness in
our nonoutcome data and was performed with
SAS callable IVEware (Survey Methodology
Program, Survey Research Center, Institute for

Social Research, University of Michigan, Ann
Arbor, MI). Multiple imputation has been
shown to be a valid and effective way of han-
dling missing data and minimizes bias that may
often result from excluding such patients. Ad-
ditionally, multiple imputation remains valid
even if the proportion of missing data is large.
The variables included in the multiple imputa-
tion model were the 4 outcomes, age, sex,
ICD-9 E codes, emergency department Glas-
gow coma score, out of hospital Glasgow
coma score, Injury Severity Score, mechanism
of trauma, and trauma team notification. Ten
imputed data sets were created as part of the
multiple imputation, and all areas under the re-
ceiver operating characteristic curve were
combined across the 10 imputed data sets with
a standard approach. Although there is no re-
ported conventional approach to combining
receiver operating characteristic curves from
imputed data sets, we averaged the individual
sensitivity and specificity data across the 10 im-
puted data sets and then plotted these points
to generate the curves in our results (257).
[Prognosis; Validation]

We split the data into development (training)
and validation (test) data sets. The develop-
ment data included all operations within the
first 5 years; the validation data included the
rest. To ensure reliability of data, we excluded
patients who had missing information on key
predictors: age, gender, operation sequence,
and number and position of implanted heart
valves. In addition, patients were excluded
from the development data if they were miss-
ing information on >3 of the remaining predic-
tors. Any predictor recorded for <50% of pa-
tients in the development data was not
included in the modeling process, resulting in
the exclusion of left ventricular end diastolic
pressure, pulmonary artery wedge pressure,
aortic valve gradient, and active endocarditis.
Patients were excluded from the validation
data if they had missing information on any of
the predictors in the risk model. To investigate
whether exclusions of patients as a result of
missing data had introduced any bias, we com-
pared the key preoperative characteristics of
patients excluded from the study with those in-
cluded. Any remaining missing predictor val-
ues in the development data were imputed by
use of multiple imputation techniques. Five dif-
ferent imputed data sets were created (258).
[Prognosis; Development; Validation]

Explanation
Almost all prediction model studies have some

missing outcome or predictor data. Yet, few studies ex-
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plicitly discuss missing data, and even fewer attempt to 
address the issue statistically (34, 45, 53, 259). In the 
absence of a mention of missing data, it is reasonable 
to assume that participants with missing data have 
been omitted from any analyses, leading to a so-called 
complete-case analysis. Including only participants with 
complete data is not only inefficient (it may greatly re-
duce the sample size) but may also lead to biased re-
sults when the remaining individuals without missing 
data are not representative of the whole original study 
sample (that is, they are a selective subsample) (Box D). 
For studies developing or validating a prediction 
model, this selection bias will lead to different (biased) 
estimates of the predictor–outcome associations (in 
model development) and of the model's predictive 
performance (in model development and validation) 
compared with what would be obtained if the whole 
data set could be analyzed. Multiple imputation meth-
ods are now embedded in most commonly used statis-
tical packages (Stata, R, SAS), allowing estimation (im-
putation) of any missing observation and subsequent 
analysis of the multiple imputed data sets. We refer the 
reader to existing guidance for combining estimates of 
interest (regression coefficients, predictive perfor-
mance measures) for prediction model studies after 
multiple imputation (Box D).

Authors of prediction model studies are recom-
mended to carefully report details about missing data
(item 13b) and describe how these were handled (item
9). If individuals with any missing values are excluded
from the analysis, then this should be clearly stated in
the eligibility criteria (item 5b), with a rationale for the
exclusion.

Key details to include when reporting how missing
data were handled, on the basis of existing guidance
(56, 200, 259), are presented in Table 4. For studies
that both develop and validate a prediction model,
authors should clearly indicate how missing data were
handled for both data sets and describe any differences.

Systematic reviews evaluating the methodological
conduct and reporting of studies developing and eval-
uating prediction models have consistently shown poor
reporting of missing data and how they were handled
(34, 43, 45, 53, 56, 59, 60, 62, 64, 66, 70, 71, 76, 78–84,
88, 93, 122, 176, 260, 261).

Statistical Analysis Methods
Item 10a. Describe how predictors were han-

dled in the analyses. [D]
Examples

For the continuous predictors age, glucose,
and Hb [hemoglobin], a linear relationship with
outcome was found to be a good approxima-
tion after assessment of nonlinearity using re-
stricted cubic splines (262). [Prognosis]

Fractional polynomials were used to explore
presence of nonlinear relationships of the con-
tinuous predictors of age, BMI [body mass in-
dex], and year to outcome (258). [Prognosis]

The nonlinear relationships between these pre-
dictor variables and lung cancer risk were esti-
mated using restricted cubic splines. Splines
for age, pack-years smoked, quit-time and
smoking duration were prepared with knot

Box D. Missing data.

Missing values, for either predictors or outcomes, occur in all types of 
medical research, including diagnostic and prognostic modeling studies 
and in both development and validation studies. Unless prompted to do 
otherwise, most statistical packages explicitly exclude individuals with 
any missing value on any of the data analyzed. The resulting so-called 
"available case" or "complete case" analysis is the most common 
approach to handle missing data. A small number of missing values in 
each of several study variables can, however, result in a large number 
of patients excluded from a multivariable analysis. Simply excluding 
records with missing data does not necessarily affect the validity of the 
results, if the deleted records are a completely random subset of the 
original study sample (195–200). However, if individuals with missing
data are not representative of the original study sample a complete case 
analysis will be biased. The extent of the bias will depend on various 
factors including the number of individuals with missing data (10, 
195–201, 492). Use of a separate category indicating missing data has 
been shown to bias results and is clinically nonsensical for prediction 
model studies and should be avoided (195, 196).

Data are described as "missing completely at random" (MCAR) if the 
probability that a specific observation is missing is not related to any 
observed study variables, predictors, or outcome. Data are "missing at 
random" (MAR) if missingness is related to other observed variables. 
Data are "missing not at random" (MNAR) if the probability of being 
missing depends on unobserved values, including possibly the missing 
value itself (493, 494). Although it is possible to verify the data to judge 
whether missing data are missing completely at random or associated 
with observed variables, it is generally impossible to prove that data are 
indeed MAR, let alone whether they are MNAR.

Instead of simply omitting all individuals with any missing value or using 
the missing indicator method, a more effective group of methods to deal 
with missingness that is related to observed variables, and thus assume a 
MAR mechanism, are so-called imputation techniques. Such imputation 
may include an overall mean or median imputation, a stratified or 
subgroup imputation, or using a multivariable model. The latter 
imputation approach can be done once (single imputation) or more than 
once (multiple imputation) (493–495). 

Multiple imputation is advocated as the preferred imputation method, 
and also leads to more correct standard errors and P values; in single 
imputation, these are estimated too small (low), falsely increasing chance 
findings (103, 195–200, 492, 496). Multiple imputation involves creating 
multiple copies of the data set, with the missing values replaced by 
imputed values drawn from their predicted distribution by using the 
observed data (493, 497). Standard texts on multiple imputation typically 
suggest 5 or 10 imputations to be sufficient. However, more recently, it 
has been suggested that the number of imputations should be much 
larger and related to the fraction of missing information in the data 
(495). Finally, standard statistical analyses can be applied on each 
imputed data set which can then be combined (using the Rubin rule 
[494]) to produce an overall estimate of each regression coefficient or 
model performance measure (item 10d) (2, 498), while taking into 
account uncertainty in the imputed values (196–201, 492, 495, 499, 500). 
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placement based on the percentile distribu-
tions of these variables in smokers only. Knots
for age were at 55, 60, 64, and 72 years. Knots
for pack-years were at 3.25, 23.25 and 63 pack-
years. Knots for quit-time were at 0, 15, and 35
years. Knots for duration were at 8, 28, and
45 years (263). [Prognosis]

Explanation
Many predictors are measured as continuous vari-

ables. Researchers must decide how to handle these in
the analysis. Although converting them into categorical
predictors is ubiquitous in studies developing clinical
prediction models, there are major concerns about the
approach. Box E explains why continuous predictors
should ideally be kept as continuous, and also exam-
ined to see whether they have a linear or nonlinear re-
lationship with the outcome.

In the absence of a priori clinical consensus, au-
thors who wish to categorize or even dichotomize con-
tinuous predictors are recommended to use a non–
data-driven method. Choosing so-called optimal cut
points on the basis of minimizing a P value should def-
initely be avoided (264, 265). Such data-driven ap-
proaches are highly flawed, leading to optimistic or
spurious predictor–outcome associations contributing
to model overfitting and thus optimistic model
performance.

Categorical predictors may also be manipulated
before the data are analyzed. In particular, categories
may be grouped to eliminate sparse categories; for in-
stance, rare histologic types may be combined into a
single “other histology” category. Any revision of cate-
gories should be explained (see also item 10b).

Table 4. Key Information to Report About Missing Data

In the Methods section:
• A clear description of the method used to account for missing data

on both predictors and outcome (e.g., complete case, single
imputation, multiple imputation)

• Possible reasons for any missingness
• For imputation (single or multiple)–based analyses:

o Provide details of the software used (including any specific
imputation routines—e.g., ICE, MICE, PROC MI, Amelia,
aregImpute)

o List the variables that were included in the imputation procedure,
including whether the outcome was included for imputing the
predictors and vice versa

o Explain how continuous, binary, and categorical predictors were
handled in the imputation model

o State whether any interactions were included in the imputation
model

o Report the number of imputations if multiple imputation was used

In the Results section:
• The number of individuals with any missing value, 1 missing value, 2

missing values, etc.
• The number of missing values (per predictor and outcome)
• Comparison of the characteristics of individuals with any missing

value and those with completely observed data. This provides some
indication whether missingness on specific study variables
(predictors or outcomes) was indeed missing completely at random
or related to observed characteristics (Box D)

Box E. Continuous predictors*.

Many predictors are recorded as continuous measurements, but are 
converted into categorical form for analysis by using 1 or more cut points 
(item 10a) (501). Common reasons are to simplify the analysis; to make 
it easier for clinicians to use the predictors or prediction model, because 
the predictor–outcome association is often unknown; and to facilitate 
graphical presentation (e.g., Kaplan–Meier curves). Although 
categorization of the estimated probabilities by the prediction models is 
required for decision making, it is important to recognise that 
categorization of continuous predictors that go into the model is 
unnecessary for statistical analysis. The perceived advantages of a simpler 
analysis come at a high cost, as explained below. 

Categorization
Categorization allows researchers to avoid strong assumptions about the 
relationship between the predictor and outcome. However, this comes at 
the expense of throwing away information. The information loss is 
obviously greatest when the predictor is dichotomized (2 categories). 
It is well known that the results (e.g., the model's predictive 
performance) can vary if different predictor cut points are used for 
splitting. If, however, the cut point is chosen on the basis of multiple 
analyses of the data, in particular taking the cut point that produced the 
smallest P value, then the P value for that predictor will be much too 
small and the performance of the prediction model will be overoptimistic 
(264). 
Even with a prespecified cut point, dichotomization is statistically 
inefficient and is strongly discouraged (265, 502–505). Furthermore, if 
cut points are needed as an aid in classifying people into distinct risk 
groups, this should be done on the basis of the model's predicted 
probabilities or risks (30, 265). 
Categorizing a continuous variable into 3 or more groups reduces the 
loss of information but is rarely done in clinical studies. Even so, cut 
points result in a model with step functions, which is inadequate to 
describe a smooth relationship (266). 

Keeping Variables Continuous 
A linear functional relationship is the most popular approach for keeping 
the continuous nature of a predictor. Often, that is an acceptable 
assumption, but it may be incorrect, leading to a misspecified model in 
which a relevant predictor may not be included or in which the assumed 
predictor–outcome relationship differs substantially from the unknown 
"true" relationship. A check for linearity can be done by investigating 
possible improvement of fit by allowing some form of nonlinearity. For a 
long time, quadratic or cubic polynomials were used to model nonlinear 
relationships, but the more general family of fractional polynomial (FP) 
functions provide a rich class of simple functions which often provide an 
improved fit (506). Determination of FP specification and model selection 
can be done simultaneously with a simple and understandable 
presentation of results (266, 297).
Spline functions, in particular restricted cubic splines, are another 
approach to investigate the functional relationship of continuous 
predictors (112). Restricted cubic splines are recommended over standard 
cubic spline functions, which are often poorly behaved in the tails of the 
predictor distribution, by restricting the tails to be linear (112, 507). They 
are extremely flexible, but no procedure for simultaneously selecting 
predictors and functional forms has yet found wide acceptance. 
Furthermore, even for a univariable spline model, reporting is usually 
restricted to the plot of the predictor–outcome relationship because 
presentation of the regression coefficients is often too complicated.

* The text of this box is substantially the same as Box 4 in reference 108.
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Authors should clearly report how each predictor
was handled in all the analyses. Specifically, the ratio-
nale (theoretical or clinical) for categorizing any contin-
uous predictors should be reported, including specify-
ing the cut points and how they were chosen. For any
predictor that has been kept as continuous, authors
should clarify whether they have been retained on the
original scale or transformed (for example, log transfor-
mation). They should report whether each predictor
was modeled as linear or nonlinear, with specification
of the method if modeled as nonlinear (for example, by
using fractional polynomials or restricted cubic splines).
If a predictor was treated as linear, it is preferable to
report whether the assumption of a linear relationship
with the outcome was checked.

Extreme values may also be shifted to less extreme
values to prevent undue leverage effects (2, 266). Au-
thors should report whether they modified or omitted
implausible observations, if done, such as omitting ex-
treme outliers.

Although information about the way predictors
were handled in the analysis is naturally part of Meth-
ods, it can be helpful also to show this information and
the definitions of categories (item 7a) within the Results
tables (items 13b and 13c).

Reviews of published modeling studies have con-
sistently shown that categorization of continuous pre-
dictors is very common, with many dichotomizing all
predictors (34, 41, 43, 45, 53, 54, 62, 63, 267, 268). A
review of 11 studies for aneurysmal subarachnoid hem-
orrhage found that age was dichotomized for all mod-
els (81). A review of prediction models in cancer found
that 12 of 45 (30%) did not provide the explicit coding
of all the predictors in the final model (55). Other re-
views have shown that how continuous predictors were
handled in the analyses was often unclear (54, 64).

Item 10b. Specify type of model, all model-
building procedures (including any predictor se-
lection), and methods for internal validation. [D]

All the statistical methods used in the develop-
ment of a prediction model should be reported. The
general principle is that enough detail should be given
such that a knowledgeable reader with access to the
original data could verify the reported results (www
.icmje.org). Moreover, the reader should be able to un-
derstand the reasons for the approaches taken.

Many possible analysis strategies can be followed
when developing a prediction model. Choices are
made at each step of the analysis (2, 112, 266, 269).
Some decisions on modeling strategy need to be in-
formed by the data, as well as by the medical context.
For example, one may wish to develop a model with
only a few major predictors to increase clinical applica-
bility (items 3a, 19b, and 20), at the sacrifice of predic-
tive performance.

A major problem in much prediction model re-
search is that many different analyses may have been
performed, but only the best prediction model is re-
ported (that is, the one with best discrimination) (1).
Such data-driven model selection can lead to selecting
an overfitted model with optimistic model perfor-
mance. This overfitting would become apparent if the

model is evaluated in new data from the same under-
lying population (270). Hence, it is essential that au-
thors provide a comprehensive view of the range of
analyses that have been performed. If necessary, full
specification of the statistical analyses can be given in
supplementary material, including providing the com-
puter code used to perform the analyses (item 21). Ide-
ally, this code is accompanied with the individual par-
ticipant data, permitting full reproducibility, although
this may not be feasible unless open access to data is
agreed on (271).

In the following sections, we consider specific as-
pects of model development analyses under several
headings. Not all aspects will be relevant for some
studies. More extensive discussions of statistical analy-
sis methods for both binary and time-to-event out-
comes can be found elsewhere (2, 12, 112, 266,
272–277).

1. Type of Model

Examples

We used the Cox proportional hazards model
in the derivation dataset to estimate the coeffi-
cients associated with each potential risk factor
[predictor] for the first ever recorded diagnosis
of cardiovascular disease for men and women
separately (278). [Prognosis]

All clinical and laboratory predictors were in-
cluded in a multivariable logistic regression
model (outcome: bacterial pneumonia) (279).
[Diagnosis]

Explanation
Various types of model are used in medical predic-

tion research (112). Most models are derived using
multivariable regression. The logistic regression model
is most often applied for binary endpoints, such as
presence versus absence of disease in diagnostic mod-
els or short-term prognostic events (for example, 30-
day mortality). The semi-parametric Cox proportional
hazards regression model is most often applied for
time-to-event outcomes in the case of longer-term
prognostic outcomes (for example, 10-year cardiovas-
cular disease risk), although fully parametric models
can also be used for time-to-event data (280, 281).

Authors should clearly identify the regression
model being used. If a logistic regression model is be-
ing used in place of a time-to-event approach for pre-
dicting longer-term prognostic outcomes, then a clear
rationale should be reported. Developing (and validat-
ing) models predicting long-term outcomes using lo-
gistic regression inherently requires all participants to
have been followed up for the entire time period.

Many variants of regression models are available
for binary, multinomial, ordered, continuous, and other
outcomes (2). Other types of prediction model include
regression trees and machine learning techniques,
such as neural networks and support vector machines
(275). If such an alternative approach is used, it is rec-
ommended to provide a motivation for this choice.
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2. Predictor Selection Before Modeling

Examples

We chose risk factors based on prior meta-
analyses and review; their ease of use in pri-
mary care settings; and whether a given risk
factor was deemed modifiable or reversible by
changing habits (i.e., smoking) or through ther-
apeutic intervention; however, we were limited
to factors that already had been used in the
two baseline cohorts that constituted EPISEM
(282). [Prognosis]

Candidate variables included all demographic,
disease-related factors and patterns of care
from each data source that have been shown
to be a risk factor for mortality following an in-
tensive care episode previously. Variables
were initially selected following a review of the
literature and consensus opinion by an expert
group comprising an intensivist, general physi-
cian, intensive care trained nurse, epidemiolo-
gists, and a statistician. The identified set was
reviewed and endorsed by 5 intensivists and a
biostatistician who are familiar with the ANZICS
APD (283). [Prognosis]

We selected 12 predictor variables for inclu-
sion in our prediction rule from the larger set
according to clinical relevance and the results
of baseline descriptive statistics in our cohort
of emergency department patients with symp-
tomatic atrial fibrillation. Specifically, we re-
viewed the baseline characteristics of the pa-
tients who did and did not experience a 30-day
adverse event and selected the 12 predictors
for inclusion in the model from these 50 candi-
date predictors according to apparent differ-
ences in predictor representation between the
2 groups, clinical relevance, and sensibil-
ity. . . . [T]o limit colinearity and ensure a parsi-
monious model, Spearman's correlations were
calculated between the clinically sensible asso-
ciations within our 12 predictor variables. Spe-
cifically, Spearman's correlations were calcu-
lated between the following clinically sensible
associations: (1) history of hypertension status
and �-blocker and diuretic use, and (2) history
of heart failure and �-blocker home use, di-
uretic home use, peripheral edema on physical
examination, and dyspnea in the emergency
department (284). [Prognosis]

Explanation
Often, more predictors are available than the inves-

tigator wishes to include in the final prediction model.
Some form of predictor selection is therefore required,
and a variety of approaches are available, each with
strengths and weaknesses (Figure 2).

An obvious way to reduce a large set of potential
predictors is to judge which ones to exclude a priori
(item 7a). Here, external evidence may be sought, for
example by critical consideration of relevant literature,
ideally in the form of a formal systematic review. The
knowledge of medical experts is also important to help
reduce the number of candidate predictors.

Other possible considerations for predictor exclu-
sion before the actual statistical modeling are that the
predictor measurement was unreliable (58), or that rel-
atively high financial costs or burden are associated
with such measurement. In the latter case, a series of
increasingly complex models can sometimes be devel-
oped with and without such predictors (262). Also,
closely related predictors can sometimes be combined
(for example, by using formal statistical clustering or
principal component techniques) in a summary score,
such as presence of atherosclerotic symptoms (285), or
the association between predictors can be estimated
(for example, by using correlation coefficients) in order
to preselect 1 of the 2 predictors in the presence of
collinearity.

3. Predictor Selection During Modeling

Example

We used multivariable logistic regression with
backward stepwise selection with a P value
greater than 0.05 for removal of variables, but
we forced variables [predictors] that we con-
sidered to have great clinical relevance back
into the model. We assessed additional risk
factors [predictors] from clinical guidelines for
possible additional effects (286). [Diagnosis]

Explanation
Even when some predictor preselection has been

done as just described, there may still be more predic-
tors remaining than one wishes to include in the pre-
diction model (Figure 2). Further selection can be
based on the predictive importance of each predictor,
or simply fitting a model with retaining all remaining
predictors (287).

One approach to predictor selection is to fit a
model by choosing predictors on the basis of the
strength of their unadjusted (univariable) association
with the outcome that is to be predicted, or to prese-
lect predictors before the multivariable modeling. The
reasoning is that predictors with limited predictive
value, based on nonsignificant univariable predictor–
outcome association, can be dropped. Although quite
common, that strategy is not recommended as a basis
for selecting predictors, because important predictors
may be rejected owing to nuances in the data set or
confounding by other predictors (2, 112, 235). Thus a
nonsignificant (unadjusted) statistical association with
the outcome does not necessarily imply that a predictor
is unimportant. However, if done, univariable predictor–
outcome analyses should be reported, including the
selection criteria (for example, significance level), and
sample size (including the number of events) for each
of the univariable analyses, because it is a form of pre-
dictor selection (items 13b and 14b and Figure 2).
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A common procedure is to apply an automated
variable selection method in the multivariable model-
ing. Several variants are available in most current soft-
ware, including forward selection, backward elimina-
tion, and their combination. Backward elimination starts
with a full model comprising all potential predictors;
variables are sequentially removed from the model un-
til a prespecified stopping rule (such as a P value or the
Akaike information criterion [AIC]) is satisfied. Forward
selection starts with an empty model, and predictors
are sequentially added until a prespecified stopping
rule is satisfied.

Backward elimination is generally preferred if auto-
mated predictor selection procedures are used be-
cause all correlations between predictors are consid-
ered in the modeling procedure (288). Use of
automated predictor selection strategies during the
multivariable modeling may yield overfitted and opti-
mistic models, particularly when sample size is small (2,
23–25, 32, 112, 289, 290). The extent of overfitting due
to the use of predictor selection strategies may be es-
timated, however, and accounted for in so-called inter-
nal validation procedures (Box C and Figure 1).

A critical issue in these automated predictor selec-
tion procedures is the criterion for predictors to be se-
lected for inclusion in the model (2). Often, the predic-
tor's significance level (�) is set to 0.05, as is common
for hypothesis testing. However, simulation studies in-
dicate that a higher value should be considered, partic-
ularly in small data sets (25). In such cases, use of the
AIC for selection is an attractive option; it accounts for
model fit while penalizing for the number of parame-
ters being estimated and corresponds to using � =
0.157 (2, 112, 291, 292).

Systematic reviews of multivariable prediction
models have found that the strategy to build the pre-
diction model was often unclear (34, 43, 54, 81, 182).
For example, the approach in selecting predictors in
the final models was unclear in 36% of 11 models for
aneurysmal subarachnoid hemorrhage (81).

4. Interaction Terms

Example

Clinically meaningful interactions were in-
cluded in the model. Their significance was
tested as a group to avoid inflating type I error.
All interaction terms were removed as a group,
and the model was refit if results were non-
significant. Specifically, interactions between
home use of �-blockers and diuretics and be-
tween edema on physical examination and a
history of heart failure were tested (284).
[Prognosis]

Explanation
Most prediction models include predictors as main

effects, which assumes that effects of all predictors are
additive. Note that additivity here is assumed on the
scale of the modeling: on the log odds scale for logistic
regression and on the log hazard scale for a Cox re-
gression model. This additivity implies multiplicative ef-

fects on the original odds and hazard scales, respec-
tively (273). The additivity assumption means that the
predictive effect of each predictor is the same, regard-
less of the values of the other predictors. This assump-
tion can formally be tested by assessing statistical inter-
action between the predictors (112). Few reported
prediction models contain interactions, and it seems
that few researchers examine them. This approach is
generally reasonable because interaction terms rarely
add to the predictive ability of the model.

If many interactions are examined and only the
strongest included in the prediction model, this would
contribute to model overfitting, leading to overly opti-
mistic performance estimates (2). Authors should re-
strict examination of predictor interactions to a small
number with prior rationale, rather than simply testing
all possible interactions, particularly when the sample
size is small. An alternative to interaction testing is to
develop different models for different subgroups: for
example, for men and women, or adults and children
(278). Because of the drastic reduction in sample size
and corresponding danger of model overfitting, this
approach is rare and should only be considered when
the sample size is large.

Survival models often also assume that predictor
effects are constant over time (that is, that hazards are
proportional). This is similar to assuming that there are
no interactions of effects by time. Some consider test-
ing of the proportional hazards assumption good sta-
tistical practice, whereas others warn of the risks for
overfitting and optimism if models are adjusted based
on statistically significant nonproportional effects, in a
similar manner as described above with predictor se-
lection strategies (2, 112).

Authors should report procedures for testing inter-
actions and proportionality of hazards in survival mod-
els, if conducted.

5. Internal Validation

Example

We assessed internal validity with a bootstrap-
ping procedure for a realistic estimate of the
performance of both prediction models in sim-
ilar future patients. We repeated the entire
modeling process including variable selec-
tion . . . in 200 samples drawn with replace-
ment from the original sample. We determined
the performances of the selected prediction
model and the simple rule that were devel-
oped from each bootstrap sample in the origi-
nal sample. Performance measures included
the average area under the ROC curve, sensi-
tivity and specificity for both outcome mea-
sures, and computed tomography reduction at
100% sensitivity for neurosurgical interventions
within each bootstrap sample (286). [Diagnosis]

Explanation
The predictive performance of a model on the

same data that was used to generate the results is re-
ferred to as the apparent performance of the model

RESEARCH AND REPORTING METHODS The TRIPOD Statement: Explanation and Elaboration

W30 Annals of Internal Medicine • Vol. 162 No. 1 • 6 January 2015 www.annals.org

Downloaded From: http://annals.org/ by a Oxford University User  on 01/06/2015



(12, 293, 294). Many prediction models are overfitted
and their apparent performance optimistic, typically
owing to the use of predictor selection strategies in
small data sets (23–25, 32, 290, 295). A better initial
assessment of the performance of a prediction model is
gained by assessing its performance using resampling
techniques, such as cross-validation or bootstrapping,
all referred to as internal validation (Figure 1 and Box F)
(12). We recommend that all model development stud-
ies include some form of internal validation, particularly
if no additional external validation is performed.

Predictor selection based on predictive strength or
P values in univariable and multivariable analyses often
leads to considerable uncertainty in model structure
(292, 296). The advantage of bootstrapping as an inter-
nal validation technique (instead of cross-validation) is
that the effects of predictor selection strategies on the
model building, and thus the extent of model overfit-
ting and optimism, can be quantified by repeating the
predictor selection process in each bootstrap sample
(292, 296–298). Furthermore, bootstrapping provides
an estimate of the so-called adjustment or correction

Box F. Internal validation.

When developing a prediction model, several factors may lead to models 
yielding optimistic apparent performance. These factors include the 
inclusion of a large number of candidate predictors relative to the 
number of outcome events (small effective sample size), the use of 
predictor selection strategies (certainly in conjunction with small effective 
sample size), and categorization of continuous predictors (2, 12, 23–25, 
32, 112, 290). It is therefore important that a more honest estimate of 
the model's performance from the development data set is obtained. 
This can be done using so-called "internal validation,"preferably using
resampling techniques, such as bootstrapping, or cross-validation 
methods. 

Apparent Performance
The apparent performance of a prediction model refers to the 
performance estimated directly from the data set that was also used to 
develop the prediction model. The prediction model is tuned to the 
development data set, leading to optimistic (biased but stable) estimates 
of performance for small data sets; however, this optimism diminishes 
when the sample size become large (32).

Split-Sample Validation ("Data Splitting")
In the classical split-sample internal validation approach, the available 
development data set is divided into 2 data sets; one to develop the 
model and the other to validate the model (see Figure 1 and Box C). 
Typically, the 2 data sets are created by randomly splitting the original 
data (e.g., 50:50 or 70:30). Despite this approach being ubiquitous in 
prediction model studies, it has several weaknesses: It is inefficient 
(because it does not use all available data for model development); the 
2 data sets will be closely similar, because they vary only by chance (such 
that the model validation will probably show similar performance as in 
the development set); and different splits lead to different results notably 
in relatively small data sets (23, 25, 32, 295, 508). Furthermore, it is 
unclear how much data should be used to develop the model and how 
much should be set aside to evaluate the model (see item 8). Large 
sample sizes are required to make this approach reasonable, at which
point the apparent performance will provide a reasonable estimate of
model performance (2, 32). A better alternative, if the sample size is  
sufficiently large, is to split by time (temporal validation) or location 
(geographic validation) (19, 20, 26). 

Cross-validation
Cross-validation is an extension of the split-sample technique to reduce 
the bias and variability of the performance estimates (32). For example, 
10-fold cross-validation involves randomly splitting the data into 10 
equally sized groups. The model is developed in 9 of the 10 groups, and 
its performance evaluated in the remaining group; this entire process is 
then repeated 10 times so that each of the 10 groups is used to test the 
model. The performance of the model is then taken as the average over 
the 10 iterations. 

Bootstrap Validation
The bootstrap validation approach not only uses all of the data to 
develop the prediction model but also provides a mechanism to account 
for model overfitting or uncertainty in the entire model development 
process, thereby quantifying any optimism in the final prediction 
model. Also, it provides for estimating a so-called shrinkage factor that 
can be used to adjust the regression coefficients and apparent 
performance for optimism, such that in subsequent model validation 
studies and applications, better performance will be obtained. The 
bootstrap validation approach includes (2, 12):

1. Develop the prediction model using the entire original sample (size n) 
and determine the apparent performance.

2. Generate a bootstrap sample, by sampling n individuals with
replacement from the original sample.

3. Develop a model using the bootstrap sample (applying all the same
modeling and predictor selection methods, as in step 1):
a. Determine the apparent performance (e.g., c-index) of this model 

on the bootstrap sample (bootstrap performance).
b. Determine the performance of the bootstrap model in the original 

sample (test performance).
4. Calculate the optimism as the difference between the bootstrap 

performance and the test performance.
5. Repeat steps 2 through 4 at least 100 times.
6. Average the estimates of optimism in step 5, and subtract the value 

from the apparent performance obtained in step 1 to obtain an 
optimism-corrected estimate of performance.

There is evidence in high-dimensional settings (e.g., "omics" and 
genome-wide association studies) that cross-validation or bootstrapping 
is often inappropriately applied by failing to repeat all modeling steps in 
each cross-validation or bootstrap sample (299, 509, 510). This may 
result in an overoptimistic assessment of performance (299, 511). Other 
biases may also cumulatively contribute to inflated performance (512).
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factor, by which the model (that is, regression coeffi-
cients) and its performance measures (item 16) can be
shrunk and thus adjusted for overfitting (Box F). It is
extremely important that all aspects of model fitting be
incorporated into each random or bootstrap derivation
sample, including selection of predictors, deciding on
transformations, and tests of interaction with other vari-
ables or time. Omitting these steps is common in clini-
cal research but can lead to biased assessments of fit,
even in the validation sample (299, 300). Refitting the
same predictors in each bootstrap sample (unless the
model was built using all predictors, in a so-called full
model approach) is not a valid approach. Authors
should give details of any internal validation
procedures.

Overfitting, optimism, and miscalibration can also
be addressed and accounted for by applying shrinkage
or penalization procedures (287, 290, 294, 301). The
lasso method and variants of it are particularly popular
when a model is developed with rare events or from a
very large number of predictors and the sample size is
small (24, 302, 303). However, its usefulness with a
smaller number of predictors is less clear (291). If such
a procedure was done, details should be given of the
method used (for example, lasso, ridge regression,
heuristic shrinkage).

Internal validation was reported for only 5 of 14
model development studies in a review of prediction
model studies published in general medical journals
(34), with similar findings found in other reviews (43, 53,
55, 64, 66, 71, 75, 76, 88, 93–95, 304, 305).

Item 10c. For validation, describe how the pre-
dictions were calculated. [V]

Examples

To evaluate the performance of each prostate
cancer risk calculation, we obtained the pre-
dicted probability for any prostate cancer and
for aggressive prostate cancer for each patient
from the PRC [Prostate Cancer Prevention Trial
risk calculator] (http://deb.uthscsa.edu/URO
RiskCalc/Pages/uroriskcalc.jsp) and from the
SRC [Sunnybrook nomogram–based prostate
cancer risk calculator] (www.prostaterisk.ca) to
evaluate each prediction model performance
(306). [Diagnosis]

To calculate the HSI [Hepatic Steatosis Index],
we used the formula given by Lee et al [ref] to
calculate the probability of having hepatic ste-
atosis as follows:

HS1

=
e0.315 × BMI + 2.421 × ALT–to–AST ratio + 0.630 × DM−9.960

1 + e0.315 × BMI + 2.421 × ALT–to–AST ratio + 0.630 × DM − 9.960

with presence of diabetes mellitus (DM) = 1;
and absence of DM = 0. ALT and AST indicate

alanine aminotransferase and aspartate amino-
transferase, respectively (307). [Diagnosis]

Open source code to calculate the QCancer
(Colorectal) scores are available from www
.qcancer.org/colorectal/ released under the
GNU Lesser General Public Licence, version 3
(308). [Prognosis]

Explanation
The preferred evaluation of the performance of an

existing prediction model for a new set of individuals
(Box C and Figure 1) relies on making predictions from
the original model (as published), and comparing these
predictions with the actual outcomes in the validation
data set (that is, calibration and discrimination) (309);
item 10d. It is therefore important that authors who
evaluate the performance of an existing prediction
model clearly state how they obtained the model pre-
dictions. This could include using the prediction model
in full (all regression coefficients, including the inter-
cept or baseline hazard for a particular time point), pro-
viding a link to a Web calculator, or including the com-
puter code to implement the prediction model (item
14).

Some model development studies present multiple
models or multiple presentations of the same model
(for example, both a full regression model and a sim-
plified score). If relevant, authors should clarify exactly
which of these prediction models they evaluated.

Prediction models are often presented graphically
as nomograms (item 15b) (310, 311). A nomogram per-
mits rapid estimation for an individual participant with-
out a calculator or computer, but obviously is inefficient
for use in a validation study on a large numbers of par-
ticipants. Authors should clearly explain whether the
actual nomogram was used manually to obtain predic-
tions or whether the underlying regression model was
used.

Without access to the published prediction model,
validation, recalibration, and updating are not possible.
For example, the FRAX model for predicting the 10-
year risk of osteoporotic or hip fracture (312), currently
embedded in numerous clinical guidelines around the
world (35, 37, 313), has not been published, making
independent evaluation of the model impossible
(314–316).

There are some misconceptions about how to vali-
date an existing model. One is that validation involves
repeating the whole modeling process on new data,
including the predictor selection and estimation of the
regression coefficients (and model performance), and
then subsequently comparing these findings with those
in the original model development study. Another mis-
conception is to refit the final model in the previously
developed and published model in the validation data.
In both cases, the result would actually be another, new
model and not the validation of an existing one (19, 20,
26, 28, 47, 309).

Authors will often validate their newly developed
prediction model by using a separate data set (for ex-
ample, recruited later in time or from another hospital).
When performance in both the development and vali-
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dation data sets are deemed similar, it is not uncom-
mon for the 2 data sets to be combined and a new
prediction model developed on the combined data set
(317). Although this is not bad practice per se, such a
study is not a validation study, but rather a validation
and model development or redevelopment, in that or-
der. The new prediction model still requires further
validation.

Item 10d. Specify all measures used to assess
model performance and, if relevant, to compare
multiple models. [D;V]

Numerous measures exist to assess and quantify
the predictive performance of prediction models (26,
252, 253, 269) (Boxes G and H). Here, we here advo-
cate the most widely used measures, which we encour-
age researchers to report. We divide these measures
into the more traditional (statistical) measures; more re-
cent measures that, to varying extents, incorporate clin-
ical consequences of the predictions; and measures to
explicitly estimate the incremental predictive value of a
specific predictor beyond existing or established pre-
dictors or comparing different models.

1. Traditional Measures

Examples

We assessed the predictive performance of the
QRISK2- 2011 risk score on the THIN cohort by
examining measures of calibration and dis-
crimination. Calibration refers to how closely
the predicted 10 year cardiovascular risk
agrees with the observed 10 year cardiovascu-
lar risk. This was assessed for each 10th of pre-
dicted risk, ensuring 10 equally sized groups
and each five year age band, by calculating the
ratio of predicted to observed cardiovascular
risk separately for men and for women. Cali-
bration of the risk score predictions was as-
sessed by plotting observed proportions ver-
sus predicted probabilities and by calculating
the calibration slope.

Discrimination is the ability of the risk score to
differentiate between patients who do and do
not experience an event during the study pe-
riod. This measure is quantified by calculating
the area under the receiver operating charac-
teristic curve statistic; a value of 0.5 represents
chance and 1 represents perfect discrimina-
tion. We also calculated the D statistic and R2

statistic, which are measures of discrimination
and explained variation, respectively, and are
tailored towards censored survival data. Higher
values for the D statistic indicate greater dis-
crimination, where an increase of 0.1 over
other risk scores is a good indicator of im-
proved prognostic separation (117). [Progno-
sis; Validation]

First, we compared the abilities of the clinical
decision rule and the general practitioner

judgement in discriminating patients with the
disease from patients without the disease, us-
ing receiver operating characteristic (ROC)
curve analysis. An area under the ROC curve
(AUC) of 0.5 indicates no discrimination,
whereas an AUC of 1.0 indicates perfect dis-
crimination. Then, we constructed a calibration
plot to separately examine the agreement be-
tween the predicted probabilities of the deci-
sion rule with the observed outcome acute cor-
onary syndrome and we constructed a similar
calibration plot for the predicted probabilities
of the general practitioner. Perfect predictions
should lie on the 45-degree line for agreement
with the outcome in the calibration plot (318).
[Diagnosis; Development]

The accuracy of [the] internally validated and
adjusted model was tested on the data of the
validation set. The regression formula from the
developed model was applied to all bakery
workers of the validation set. The agreement
between the predicted probabilities and the
observed frequencies for sensitization (calibra-
tion) was evaluated graphically by plotting the
predicted probabilities (x-axis) by the observed
frequencies (y-axis) of the outcome. The asso-
ciation between predicted probabilities and
observed frequencies can be described by a
line with an intercept and a slope. An intercept
of zero and a slope of one indicate perfect
calibration. . . . The discrimination was as-
sessed with the ROC area (319). [Diagnosis;
Development]

Explanation
Two key aspects characterize the performance of a

prediction model: calibration and discrimination. They
should be reported in all prediction model papers
(Boxes G and H).

Calibration reflects the agreement between predic-
tions from the model and observed outcomes. Calibra-
tion is preferably reported graphically, with observed
risks plotted on the y-axis against predicted risks on the
x-axis, but may also be presented in a tabular format.

Discrimination refers to the ability of a prediction
model to differentiate between those who do or do not
experience the outcome event. The most general and
widely reported measure of discrimination, for both lo-
gistic and survival models, is the concordance index
(c-index), which equals the area under the receiver-
operating characteristic curve for logistic prediction
models. A number of different versions of the c-index
exist (320); therefore, authors should clearly state which
version is being calculated.

In addition to measures of discrimination and cali-
bration, various other measures of overall performance
can be reported; these include measures of explained
variation (R2) (321–329) and the Brier score (330–332).
A large number of different approaches to estimate R2

have been proposed; authors should clearly reference
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Box G. Performance measures.

When we develop a risk prediction model, we should assess its 
performance. The most important considerations of a model's 
performance are discrimination and calibration (see item 10d and Box H). 
For model development studies, we are primarily interested in 
discrimination, because the model will be well calibrated (on average) by 
definition. In validation studies, assessment of both discrimination and 
calibration is fundamental (252, 513).

Calibration reflects the agreement between outcome predictions from 
the model and the observed outcomes. Informally, a model is said to be 
well calibrated if, for every group of, say, 100 individuals, each with a 
mean predicted risk of x%, close to x indeed have (diagnostic model) or 
develop (prognostic model) the outcome.

Calibration is preferably reported graphically with predicted outcome 
probabilities (on the x-axis) plotted against observed outcome 
frequencies (on the y-axis). This plot is commonly done by tenths of the 
predicted risk, and is preferably augmented by a smoothed (lowess) line 
over the entire predicted probability range, which is possible both for 
prediction models developed by logistic regression (112, 514) and by 
survival modeling (515) (see item 16). This plot displays the direction and 
magnitude of model miscalibration across the probability range, which 
can be combined with estimates of the calibration slope and intercept 
(515). Smoothed or by subgroups, a well-calibrated model shows 
predictions lying on or around the 45° line of the calibration plot; perfect 
calibration shows a slope of 1 and intercept of 0, although some caveats 
have recently been identified (516). 

Calibration plots tend to show good calibration in the data set from 
which they were developed, and even perfect calibration when the 
smoothed method is used. They may be accompanied by a test for 
calibration intercept equals 0 and slope equals 1 (517, 518). Comparing  

tabular form (usually by tenths of predicted risk). 

Finally, it is common to apply statistical tests for agreement between 
predicted and observed probabilities using the Hosmer–Lemeshow test or

 

the counterpart tests for survival models including the Nam–D'Agostino 
test (519) or Grønnesby–Borgan test (520). Such tests have limited 
statistical power to evaluate poor calibration and are sensitive to the 
grouping and sample size (521–523): they are often nonsignificant for 
small N and nearly always significant for large N. Furthermore, they 
convey no indication of magnitude or direction of any miscalibration, 
hence the preference for calibration plots.

In addition, calibration (plots) may also be evaluated in relation to key 
predictors, such as age or sex subgroups (117, 524). Approaches for 
assessing calibration of multinomial prediction models have recently been

 

proposed (525). 

Discrimination refers to the ability of a prediction model to differentiate 
between those who do or do not experience the outcome event. A 
model has perfect discrimination if the predicted risks for all individuals 
who have (diagnostic) or develop (prognosis) the outcome are higher 
than those for all individuals who do not experience the outcome. 
Discrimination is commonly estimated by the so-called concordance 
index (c-index). The c-index reflects the probability that for any 
randomly selected pair of individuals, one with and one without the 
outcome, the model assigns a higher probability to the individual with 
the outcome (526). The c-index is identical to the area under the 
receiver-operating characteristic curve for models with binary endpoints, 
and can be generalized for time-to-event (survival) models accounting 
for censoring. For survival models, a number of different c-indices have 
been proposed (527); authors should state clearly which measure is used, 
including an appropriate reference. More recently, extensions to the 
c-index for models with more than 2 outcome categories (528), 
competing risks (529), and clustering have been proposed (170, 171). 

Overall performance measures, such as explained variation (R2) (321, 
324–329) and the Brier score (330, 331), are sometimes reported in 
addition to the traditional measures of discrimination and calibration, 
although they are less intuitive. Moreover, a large number of different 
approaches to estimate R2 have been proposed; it is therefore important 
that authors clearly reference the version they are calculating and 
reporting.

Classification measures, such as predictive values, sensitivity, and 
specificity, are performance measures after introducing 1 or more 
probability thresholds. Doing this, one can estimate accuracy or 
classification measures often reported in single diagnostic test or 
prognostic factor studies. However, such dichotomization and thus 
related classification measures lead to loss of information. Moreover, 
introducing such a threshold implies that it is relevant to clinical practice, 
which often is not the case. 

Decision curve analysis (360, 363–366) offers insight into clinical 
consequences by determining the relationship between a chosen 
predicted probability threshold and the relative value of false-positive 
and false-negative results to obtain a value of net benefit of using the 
model at that threshold. 

Net reclassification improvement (NRI) is commonly used to quantify 
whether adding a new predictor to an existing model is of benefit, but 
can also be used for comparing 2 nonnested models (339, 347, 348, 
420, 530). The NRI is the net proportion of events reclassified correctly 
plus the net proportion of nonevents reclassified correctly. An upper 
bound on the NRI is the continuous NRI (i.e., no categories), which 
considers any change (increase or decrease) in predicted risk for each 
individual (347, 530).

Integrated discrimination improvement (IDI) is the difference in 
predicted probabilities in those who do and do not have (diagnosis) or 
develop (prognosis) the outcome (339). It estimates the magnitude of 
the probability improvements or worsening between 2 models (nested or 
not), over all possible probability thresholds. The IDI can be interpreted 
as equivalent to the difference in mean predicted probability in subjects 
without and with the outcome.

predicted versus observed outcome probabilities may also be shown in
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the version they used. For models of survival (for exam-
ple, developed using Cox regression), the D-statistic
has recently been suggested as a measure of prognos-
tic separation (333).

When comparing the performance of different
models on the same data set, formal statistical tests,
such as the DeLong test (334), can be used. However,
this test is inappropriate if the compared models are
nested (that is, if one model contains all predictors of
the other, but has at least 1 additional predictor), and
fitted in the same data set, for instance, if a model in-
cluding clinical predictors plus a new molecular marker
is compared with the clinical predictors alone (335).

Finally, it is widely recommended that any newly
developed prediction model is compared to existing,
published models, ideally in a quantitative manner (47,
48). In the absence of any direct comparison between 2
or more models on the same data set, it is difficult to
decide, from all the available prediction models, which
is potentially more useful. Numerous systematic re-
views showed that very few studies developing or vali-
dating prediction models for the same outcome com-
pare performance against other existing models (82).

Calibration is a key characteristic, and its assess-
ment is widely recommended. However, many system-
atic reviews of multivariable prediction models have
found that calibration is rarely reported (34, 41, 43, 55,
62, 63, 66, 73–82, 84, 86, 88, 90–92, 94, 122, 176, 180,
267, 336). For example, calibration was assessed in
only 10 of 39 (26%) of studies of type 2 diabetes pre-
diction models (45). Although discrimination is the per-
formance measure most widely measured, this perfor-
mance measure is also not always reported (74, 78, 81,
88, 122, 336, 337) (for example, in 44% of models for
aneurysmal subarachnoid hemorrhage [81]). Very few
studies compare model performance against other ex-
isting prediction models in the same data set (81, 82,
122).

2. Quantifying the Incremental Value of an
Additional Predictor

Examples

We assessed the incremental prognostic value
of biomarkers when added to the GRACE
score by the likelihood ratio test. We used 3
complementary measures of discrimination im-
provement to assess the magnitude of the in-
crease in model performance when individual
biomarkers were added to GRACE: change in
AUC (ΔAUC), integrated discrimination im-
provement (IDI), and continuous and categori-
cal net reclassification improvement (NRI). To
get a sense of clinical usefulness, we calculated
the NRI (>0.02), which considers 2% as the
minimum threshold for a meaningful change in
predicted risk. Moreover, 2 categorical NRIs
were applied with prespecified risk thresholds
of 6% and 14%, chosen in accord with a previ-
ous study, or 5% and 12%, chosen in accord
with the observed event rate in the present
study. Categorical NRIs define upward and

Box H. Assessing performance of a Cox regression model.

For most types of regression-based prediction models, assessing their 
performance is straightforward. For logistic regression, for example, a 
common approach is to plot the observed probability of the outcome 
event against the predicted probability for multiple groups (often 10) 
defined by predicted risk (see Box G and items 10d and 15a). In such a 
"calibration plot," the model's discrimination is also indicated by the 
spread of the predicted probabilities across the risks groups (417); formal 
measures of discrimination can also be obtained (item 10d). 

A comparable approach can be adopted for fully parametric models for 
time-to-event data, but these models are rarely used. Use of Cox 
regression predominates for such data, but assessing the calibration of a 
Cox model is not straightforward because a Cox model is not fully 
specified. The model allows estimation of relative differences in risk 
between patients with different characteristics, but because it does not 
estimate the baseline survival function, it does not estimate absolute risks 
(event probabilities) (309). The exception to this is when the focus of the 
Cox-based prediction model is on outcomes at a fixed time point (e.g., 
risk for cardiovascular death by 10 years). In this instance, only the 
baseline survival probability at the time point of interest is required, and 
discrimination and calibration can be assessed using the methods 
outlined in Box G. 

Derivation of a Cox Model
A Cox model is specified by a set of predictors with their regression 
coefficients (log hazard ratios) (411, 531). The prognostic index (PI) is a 
weighted sum of the variables in the model, where the weights are the 
regression coefficients (see example in item 15b). The PI for an individual 
is then the log relative hazard compared with a hypothetical individual 
whose PI is zero (309).

When a new model is obtained using Cox regression, the PI can be used 
to examine the predicted survival for several risk groups. For example, 
patients could be split into 4 equal groups based on their PI values. 
Discrimination is seen visually from the spread of Kaplan–Meier curves 
for these risk groups, and numerical performance measures can be 
obtained (see item 10d). Calibration can be examined by superimposing 
survival curves derived directly from the Cox model (309, 373).

Validation of a Cox Model
In practice, the baseline survival function for a Cox model is never 
published. As a result, the external validation of a Cox model by different 
investigators is hindered because absolute risks cannot be 
estimated—specifically, calibration may not be assessed easily. Royston 
and Altman (309) suggested various analysis options in relation to the 
amount of information available from the derivation study. 

Discrimination can be examined provided that the derivation model is 
specified at least as a set of predictors with their regression coefficients, 
as long as the precise coding of each predictor is specified. The value of 
the PI can then be calculated for each participant in the validation data 
set, and subsequently a regression analysis performed with the PI as a 
single covariate. With similar case mix, the discrimination in the 
validation data set is about the same as for the derivation data when the 
regression coefficient for the PI is approximately 1. If the slope in the 
validation data is < 1, discrimination is poorer; conversely, if it is > 1, 
discrimination is better. 

If, in addition, Kaplan–Meier curves are shown for several risk groups in 
the derivation study, then a comparison between corresponding 
Kaplan–Meier plots for the derivation and validation data sets supports a 
rough assessment of model calibration. Good calibration may be inferred 
(by judgement and not a formal comparison) if the 2 sets of survival 
curves agree well. Such a calibration assessment is not a strict 
comparison between observed and predicted values, however, because 
the Cox model is not being used directly to predict survival probabilities. 
Without the baseline survival function, it is not possible to judge how 
good the calibration in an independent sample is (309).
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downward reclassification only if predicted
risks move from one category to another. Since
the number of biomarkers added to GRACE re-
mained small (maximum of 2), the degree of
overoptimism was likely to be small. Still, we
reran the ΔAUC and IDI analyses using boot-
strap internal validation and confirmed our re-
sults (338). [Prognosis; Incremental Value]

Explanation
The advantage of multivariable analysis in contrast

to single-marker or test research is that it generates
direct evidence whether a test or marker has incremen-
tal value. However, quantifying the incremental value of
adding a certain, often new, predictor to established
predictors or even to an existing prediction model, by
using the increase or improvement in the general, tra-
ditional performance measures (such as calibration,
discrimination, or R2), is difficult to interpret clinically
(339, 340). Furthermore, there are concerns that such
performance measures as the c-index are insensitive for
assessing incremental value (341, 342), although its
role as a descriptive measure still remains useful (343).
Finally, statistical significance tests can be misleading,
because statistically significant associations of new
but weak predictors are easily found in a large
sample.

New measures have therefore been proposed that
are based on the concept of reclassification of individ-
uals across predefined risk categories. Such reclassifi-
cation tables show how individuals are reclassified
(from low to high risk and vice versa) by a model with or
without a particular predictor (344–346). The use of re-
classification tables clearly relies on sensible thresholds
to define the risk groups (item 11).

The net reclassification improvement (NRI) is cur-
rently a commonly used measure to quantify the extent
of reclassification seen in such tables (339, 347, 348).
The NRI can be used in model development when add-
ing a certain predictor to established predictors or ex-
isting model (that is, the models are nested) and also in
model validation when comparing nonnested models,
provided that the compared models are sufficiently
well calibrated for the data (349). Hence, before using
the NRI, model calibration needs to be evaluated first
to enable readers to judge the suitability of calculating
the NRI.

The NRI has been shown to be highly sensitive to
the selection of thresholds defining the risk categories
(and is thereby open to manipulation), and there are
several other caveats regarding its use, especially in
models with suboptimal calibration (350–356). Hence,
we recommend that if the NRI is calculated, it should
always be accompanied by the underlying classification
table stratified for participants with and without the out-
come of interest (357); item 16. Concerns have also
been raised that continuous NRI, which measures asso-
ciation rather than model improvement, is subject to
overinterpretation and is sensitive to model miscalibra-
tion (346).

Alternative measures, such as the change in net
benefit, the change in relative utility, and the weighted
net reclassification improvement, have been suggested

as preferable to the NRI. These 3 measures can be
mathematically interconverted (349). Identifying suit-
able measures for quantifying the incremental value of
adding a predictor to an existing prediction model re-
mains an active research area, and finding clinically in-
tuitive measures based on the model-based likelihood
ratio test remains attractive (343, 358).

Systematic reviews found that studies on reclassifi-
cation rarely provided a reference for the choice of risk
thresholds (105). Furthermore, over one half of the
studies failed to report calibration, and few provided
information on the proportion of correct and incorrect
reclassifications.

3. Utility Measures

Example

We used decision curve analysis (accounting
for censored observations) to describe and
compare the clinical effects of QRISK2-2011
and the NICE Framingham equation. A model
is considered to have clinical value if it has the
highest net benefit across the range of thresh-
olds for which an individual would be desig-
nated at high risk. Briefly, the net benefit of a
model is the difference between the propor-
tion of true positives and the proportion of
false positives weighted by the odds of the se-
lected threshold for high risk designation. At
any given threshold, the model with the higher
net benefit is the preferred model (117). [Prog-
nosis; Validation]

Explanation
Both discrimination and calibration are statistical

properties characterizing the performance of a predic-
tion model, but neither captures the clinical conse-
quences of a particular level of discrimination or de-
gree of miscalibration (359, 360). New approaches,
such as decision curve analysis (361–363) and relative
utility (364–366), offer insight to the clinical conse-
quences or net benefits of using a prediction model at
specific thresholds (349). They can also be used to
compare the clinical usefulness of different models: for
example, a basic and extended model fitted on the
same data set, or even 2 different models (developed
from 2 different data sets) validated on the same inde-
pendent data set (367).

Item 10e. Describe any model updating (for
example, recalibration) arising from the validation,
if done. [V]

Examples

The coefficients of the [original diagnostic] ex-
pert model are likely subject to overfitting, as
there were 25 diagnostic indicators originally
under examination, but only 36 vignettes. To
quantify the amount of overfitting, we deter-
mine [in our validation dataset] the shrinkage
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factor by studying the calibration slope b when
fitting the logistic regression model . . . :

logit (P (Y = 1)) = a + b * logit (p)

where [Y = 1 indicates pneumonia (outcome)
presence in our validation set and] p is the vec-
tor of predicted probabilities. The slope b of
the linear predictor defines the shrinkage fac-
tor. Well calibrated models have b � 1. Thus,
we recalibrate the coefficients of the genuine
expert model by multiplying them with the
shrinkage factor (shrinkage after estimation)
(368). [Diagnosis; Model Updating; Logistic]

In this study, we adopted the [model updating]
approach of “validation by calibration” pro-
posed by Van Houwelingen. For each risk cat-
egory, a Weibull proportional hazards model
was fitted using the overall survival values pre-
dicted by the [original] UISS prediction model.
These expected curves were plotted against
the observed Kaplan-Meier curves, and possi-
ble differences were assessed by a “calibration
model,” which evaluated how much the origi-
nal prognostic score was valid on the new data
by testing 3 different parameters (�, �, and �).
If the joint null hypothesis on � = 0, � = �1,
and � = 1 was rejected (i.e., if discrepancies
were found between observed and expected
curves), estimates of the calibration model
were used to recalibrate predicted probabili-
ties. Note that recalibration does not affect the
model's discrimination accuracy. Specific de-
tails of this approach are reported in the arti-
cles by Van Houwelingen and Miceli et al (369).
[Prognosis; Model Updating; Survival]

Results of the external validation prompted us
to update the models. We adjusted the inter-
cept and regression coefficients of the predic-
tion models to the Irish setting. The most im-
portant difference with the Dutch setting is the
lower Hb cutoff level for donation, which af-
fects the outcome and the breakpoint in the
piecewise linear function for the predictors
previous Hb level. Two methods were applied
for updating: recalibration of the model and
model revision. Recalibration included adjust-
ment of the intercept and adjustment of the
individual regression coefficients with the same
factor, that is, the calibration slope. For the re-
vised models, individual regression coeffi-
cients were separately adjusted. This was done
by adding the predictors to the recalibrated
model in a step forward manner and to test
with a likelihood ratio test (p < 0.05) if they had
added value. If so, the regression coefficient

for that predictor was adjusted further (370).
[Diagnostic; Model Updating; Logistic]

Explanation
When validating (or applying) an existing predic-

tion model in other individuals, the predictive perfor-
mance is commonly poorer than the performance esti-
mated in the individuals on whom the model was
derived. The difference is likely to be greater if a more
stringent form of validation is used (Box C and Figure
1): Reduced performance is more likely in a different
geographic or setting validation, by different investiga-
tors, than in a temporal validation by the same investi-
gators (2, 20, 21, 102, 290). When lower predictive ac-
curacy is encountered, investigators may simply reject
the existing model and refit the model on their valida-
tion set, or even develop a completely new model.

Although tempting, development of a new predic-
tion model for the same outcomes or target popula-
tions is an unfortunate habit for various reasons (20, 31,
102, 290). First, developing a different model per time
period, hospital, country, or setting makes prediction
research localized. Second, health care providers will
have great difficulty deciding which model to use in
their practice. Third, validation studies often include
fewer individuals than the corresponding development
study, making the new model more subject to overfit-
ting and perhaps even less generalizable than the orig-
inal model. Finally, prior knowledge captured in the
original (development) studies is not used optimally,
which is counterintuitive to the notion that inferences
and guidelines to enhance evidence-based medicine
should be based on as much data as possible (371).

Before developing a new model from the valida-
tion data at hand, one may rather first try adjusting (that
is, updating) the original prediction model to deter-
mine to what extent the loss in predictive accuracy may
be overcome (85). An adjusted model combines the
information captured in the original model with infor-
mation from individuals in the validation set, and so is
likely have improved transportability to other
individuals.

There are several methods for updating prediction
models (2, 20, 31, 102, 290, 372, 373). The methods
vary in extensiveness, which is reflected by the number
of parameters that are reestimated. Commonly, the de-
velopment and validation data set differ in proportion
of outcome events, yielding poor calibration of the
original model in the new data. By adjusting the inter-
cept or baseline hazard (if known) of the original model
to the validation sample, calibration is often improved,
requiring only 1 updated parameter and thus a small
validation set (31, 290, 372, 373). More extensive up-
dating methods vary from overall adjustment of all pre-
dictor weights by a single recalibration factor, adjust-
ment of a particular predictor weight, or addition of a
new predictor to reestimation of all individual regres-
sion coefficients. The last method may be indicated
when the validation data set is much larger than the
development data set.

Table 3 summarizes the different updating meth-
ods. Simple updating methods (1 and 2) only improve a
model's calibration. To improve discrimination, meth-
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ods 3 to 6 are needed. Updated models, certainly
when based on relatively small validation sets, still need
to be validated before application in routine practice
(20).

Finally, as noted in Box C, updating of an existing
model in a new data set is not recommended without
first quantifying the model's predictive performance in
the new data (47). If the model has been updated, au-
thors should state how and give the rationale for doing
so.

Risk Groups
Item 11. Provide details on how risk groups

were created, if done. [D;V]

Examples

Once a final model was defined, patients were
divided into risk groups in 2 ways: 3 groups
according to low, medium, and high risk (plac-
ing cut points at the 25th and 75th percentiles
of the model's risk score distribution); and 10
groups, using Cox's cut points. The latter min-
imize the loss of information for a given num-
ber of groups. Because the use of 3 risk groups
is familiar in the clinical setting, the 3-group
paradigm is used hereafter to characterize
the model (374). [Prognosis; Development;
Validation]

One of the goals of this model was to develop
an easily accessible method for the clinician to
stratify risk of patients preparing to undergo
head and neck cancer surgery. To this end, we
defined 3 categories of transfusion risk: low
(≤15%), intermediate (15%-24%) and high
(≥25%). (375) [Prognosis; Validation]

Patients were identified as high risk if their 10
year predicted cardiovascular disease risk was
≥20%, as per the guidelines set out by NICE
(117). [Prognosis; Validation]

Three risk groups were identified on the basis
of PI [prognostic index] distribution tertiles.
The low-risk subgroup (first tertile, PI ≤8.97)
had event-free survival (EFS) rates at 5 and 10
years of 100 and 89% (95% CI, 60–97%), re-
spectively. The intermediate-risk subgroup
(second tertile, 8.97 < PI 10.06) had EFS rates
at 5 and 10 years of 95% (95% CI, 85–98%) and
83% (95% CI, 64–93%), respectively. The high-
risk group (third tertile, PI > 10.06) had EFS
rates at 5 and 10 years of 85% (95% CI, 72–
92%) and 44% (95% CI, 24–63%), respectively
(376). [Prognosis; Development]

Finally, a diagnostic rule was derived from the
shrunken, rounded, multivariable coefficients

to estimate the probability of heart failure pres-
ence, ranging from 0% to 100%. Score thresh-
olds for ruling in and ruling out heart failure
were introduced based on clinically acceptable
probabilities of false-positive (20% and 30%)
and false-negative (10% and 20%) diagnoses
(377). [Diagnosis; Development; Validation]

Explanation
In many prediction model studies, risk groups are

created using the probabilities from a multivariable
prediction model. Often these are labeled, for exam-
ple, as low-, intermediate-, and high-risk groups as part
of the presentation of results or to aid clinical decision
making (items 3a and 20).

There is no clear consensus on how to create risk
groups, or indeed how many groups to use (43). If risk
groups are constructed, authors should specify the
boundaries used (that is, the range of predicted prob-
abilities for each group) used and how they were cho-
sen. If, however, the grouping is intended to aid deci-
sion making, authors should explain the rationale for
the number of risk groups and choice of risk
thresholds.

There are concerns that use of risk groups may not
be in the best interest of patients (2, 112). Such group-
ings, although arbitrary, may become standardized
despite lacking any rationale (for example, for the Not-
tingham Prognostic Index [378]). Also, the simplifica-
tion of predictions means that the risks (probabilities)
are assumed to be the same for all individuals within
each category. Therefore, irrespective of the creation of
any risk groups, reports should provide sufficient infor-
mation (intercept and betas from a logistic regression
model, nomograms, or Web-based calculators for de-
tailed or more complex calculations) to enable calcula-
tion of subject-specific risks rather than only group-
based risks (item 15a).

In a few cases, the risk groups may be formed
based on external knowledge that suggests a different
treatment or management plan based on specific risk
thresholds (for example, whether a statin is indicated or
not for preventing cardiovascular disease outcomes
when the prognostic risk is above or below a certain
threshold [117]). In most cases, however, there is
no such explicit guidance based on estimated
probabilities.

In a review of 47 prediction models in cancer, risk
groups were created in 36 studies (76%), but the ap-
proach to create the groups was unclear or not re-
ported in 17 studies (47%) (54). Other reviews have had
similar findings (43).

Development Versus Validation
Item 12. For validation, identify any differences

from the development study in setting, eligibility
criteria, outcome, and predictors. [V]

Examples

. . . the summed GRACE risk score corre-
sponds to an estimated probability of all-cause
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mortality from hospital discharge to 6
months. . . . [I]ts validity beyond 6 months has
not been established. In this study, we exam-
ined whether this GRACE risk score calculated
at hospital discharge would predict longer
term (up to 4 years) mortality in a separate
registry cohort . . . (379). [Prognosis; Different
outcome]

The Wells rule was based on data obtained
from referred patients suspected of having
deep vein thrombosis who attended second-
ary care outpatient clinics. Although it is often
argued that secondary care outpatients are
similar to primary care patients, differences
may exist because of the referral mechanism of
primary care physicians. The true diagnostic or
discriminative accuracy of the Wells rule has
never been formally validated in primary care
patients in whom DVT is suspected. A valida-
tion study is needed because the performance
of any diagnostic or prognostic prediction rule
tends to be lower than expected from data in
the original study when it is applied to new pa-
tients, particularly when these patients are se-
lected from other settings. We sought to quan-
tify the diagnostic performance of the Wells
rule in primary care patients and compare it
with the results reported in the original studies
by Wells and colleagues (188). [Diagnosis; Dif-
ferent setting]

When definitions of variables were not identi-
cal across the different studies (for example
physical activity), we tried to use the best avail-
able variables to achieve reasonable consis-
tency across databases. For example, in
NHANES, we classified participants as “physi-
cally active” if they answered “more active” to
the question, “Compare your activity with oth-
ers of the same age.” Otherwise, we classified
participants as “not physically active.” In ARIC,
physical activity was assessed in a question
with a response of “yes” or “no”, whereas in
CHS, we dichotomized the physical activity
question into “no” or “low” versus “moderate”
or “high” (380). [Prognosis; Different predictors]

As the NWAHS did not collect data on use of
antihypertensive medications, we assumed no
participants were taking antihypertensive med-
ications. Similarly, as the BMES did not collect
data on a history of high blood glucose
level, we assumed that no participants had
such a history (381). [Prognostic; Different
Predictors]

Explanation
For studies that evaluate the performance of a pre-

diction model on a separate data set, authors should
clearly identify any differences, intended or not, that
could potentially affect model transportability (26, 28).

Prediction models developed in one setting (such
as primary care) or in a particular country are not nec-
essarily equally useful in another setting (such as sec-
ondary care) or country (19–21, 26, 28, 33, 183, 382,
383). For example, the case mix (item 5a) tends to be
different between primary and secondary care, with
comparatively more signs and symptoms (and nar-
rower ranges in predictor values) and more advanced
disease status in secondary care (20, 21, 102).

Eligibility criteria may also differ unintentionally (for
example, a wider or restricted age range), leading to
some difference in case mix (186), or differ intentionally
(for example, validating a prediction model in children
that was developed in adult patients [191, 384]).

The outcome in a validation study may seem the
same as in the development study, but the precise def-
inition or method of measurement may differ. For in-
stance, diabetes could be determined by using fasting
glucose levels, oral glucose tolerance test, or self-
reported diabetes (380, 385). Even when the outcome
definition and measurement are the same, differences
may nevertheless arise because conditions differ, for
example owing to differences in the expertise of the
observers (such as radiologists or pathologists), differ-
ent laboratory procedures, or different imaging
technologies.

As with setting and eligibility criteria, outcome dif-
ferences may also be intentional. The objective of the
study may be to assess whether a model can be used to
predict a different outcome (379, 383, 386). Models de-
veloped to predict postoperative mortality after cardiac
surgery have been evaluated to predict prolonged in-
tensive care unit stay (46). Existing prediction models
have also been evaluated for predicting the same out-
come though at different time points (387): for exam-
ple, the GRACE model predicting 6-month mortality in
acute coronary syndrome patients (388), evaluated for
predicting mortality at 4 years (379).

Finally, the definition and measurement of predic-
tors may differ, again intentionally or not. When the
definitions are the same, differences may arise because
the conditions under which predictors are measured
have changed. For example, a specific variable in
blood may originally be measured using a laboratory
method on venous blood but is validated by using a
bedside, point-of-care assay on capillary blood (136,
389).

Authors of validation studies should also clearly re-
port how the predictors have been coded. This in-
cludes providing the units of measurement for all con-
tinuous predictors and reporting how any categorical
predictors have been coded (for example, for sex, with
women coded as 0 and men coded as 1); see items 7a
and 15a. Moreover, when using historical data to eval-
uate the performance of a prediction model, occasion-
ally a predictor may not have been collected as the
data were collected for a different purpose. Investiga-
tors may then use proxy predictors (46), impute the
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predictor, or omit the predictor from the model (198).
Omitting the predictor (equivalent to imputing a value
of zero) should be avoided as the model predictions in
the validation data become difficult to interpret (198)—
for example, FRAX (312, 314).

It is therefore important that authors of validation
studies clearly report whether there were any (inten-
tional or not) modifications in setting, eligibility criteria,
predictors, and outcome definition and measurement,
or include a statement that the conditions, definitions,
and measurements were identical to those of the devel-
opment study. They should not merely list the eligibility
criteria, outcome, and predictors, but clearly highlight
any differences and how these were handled.

In a recent systematic review of external validation
studies, it was unclear in 6 of 45 studies (13%) whether
the definition of the outcome was same as the original
outcome definition (122).

Results
Participants

Item 13a. Describe the flow of participants
through the study, including the number of partic-
ipants with and without the outcome and, if appli-
cable, a summary of the follow-up time. A diagram
may be helpful. [D;V]

Examples: Flow of Participants 
See Figures 3 and 4.

Examples: Follow-up Time

We calculated the 10 year estimated risk of car-
diovascular for every patient in the THIN cohort
using the QRISK2-2011 risk score . . . and
292 928 patients (14.1%) were followed up for
10 years or more (117). [Prognosis; Validation]

At time of analysis, 204 patients (66%) had
died. The median follow-up for the surviving
patients was 12 (range 1-84) months (391).
[Prognosis; Development]

Median follow-up was computed according to
the “reverse Kaplan Meier” method, which cal-
culates potential follow-up in the same way as
the Kaplan–Meier estimate of the survival func-
tion, but with the meaning of the status indica-
tor reversed. Thus, death censors the true but
unknown observation time of an individual,
and censoring is an end-point (Schemper &
Smith, 1996) (392). [Prognosis; Development]
Explanation
It is important for readers to understand the source

of the study participants, including how they were se-
lected from a larger initial group. Such information is
vital to judge the context in which the prediction model
can be validated or applied. Although the flow of par-
ticipants in a study can be given in the text or a table,
flow diagrams are a valuable way to clarify the deriva-
tion of the study sample in whom the model was devel-
oped or validated.

Figure 3. Example figure: participant flow diagram.

Complete case
(n = 852 532)

424 cases

Primary analysis
(multiple

imputation)
(n = 1 077 977)

582 cases

Primary analysis
(multiple

imputation)
(n = 1 062 217)

1184 cases

Women
(n = 1 077 977)

582 cases

Men
(n = 1 062 217)

1184 cases

Eligible individuals
(n = 2 135 540)

(1 January 2000 to 30 June 2008)
1766 gastroesophageal cancer cases

Complete case
(n = 808 889)

832 cases

Missing data
(n = 225 445)

Current smoker,
amount not recorded 

(n = 166 812)
Smoking status not

recorded (n = 58 633)

Missing data
(n = 253 328)

Current smoker,
amount not recorded 

(n = 143 533)
Smoking status not

recorded (n = 109 795)

Reprinted from reference 390, with permission from Elsevier.

Figure 4. Example figure: participant flow diagram.

NT-proBNP not available
(imputed)
(n = 11)

NT-proBNP not available
(imputed)
(n = 22)

Heart failure present
(n = 207)

Heart failure absent
(n = 514)

Patients assessed by outcomes panel (n = 721)

Diagnostic work-up at rapid access outpatient clinic
(n = 721)

6-month follow-up data available from primary care physician (n = 709)
6-month follow-up data from patients themselves (n = 12)

Patient suspected of slow-onset heart failure by
their primary care physician (n = 730)

Excluded patients (n = 9)
No informed consent: 6
No echocardiogram: 3

Reproduced from reference 377 with permission. NT-proBNP =
N-terminal pro-brain natriuretic peptide.

RESEARCH AND REPORTING METHODS The TRIPOD Statement: Explanation and Elaboration

W40 Annals of Internal Medicine • Vol. 162 No. 1 • 6 January 2015 www.annals.org

Downloaded From: http://annals.org/ by a Oxford University User  on 01/06/2015



The entrance point to the flow diagram is the
source of participants, and successive steps in the dia-
gram can relate eligibility criteria and data availability
(108) (item 5b). It can be helpful also to include other
information in the diagram, such as numbers of partic-
ipants with missing observations and the numbers of
outcome events.

For studies of prognosis, it is important to summa-
rize the follow-up time of the included participants; this
is often given as the median time. The method of cal-
culating the median follow-up should be specified.
One approach is the reverse Kaplan–Meier method,
which uses data from all patients in the cohort (393).
Here, the standard Kaplan–Meier method is used with
the event indicator reversed, so that censoring be-
comes the outcome of interest (108). It may be helpful
also to give the median follow-up of those patients who
did not have the event (in other words, those with cen-
sored survival times). For models predicting the prob-
ability of an event by a particular time point, it is useful
to report the number of individuals who have been ob-
served until that time point.

For diagnostic studies with delayed disease verifi-
cation as outcome (items 4a and 6b), reporting the me-
dian follow-up is important. If the study data were split
into derivation and validation data sets, then it is helpful
to provide all of the above information for each sample.

Recent systematic reviews of prediction model
studies have observed that many do not report the
number of outcome events (34, 45, 54, 85, 394). Other
reviews have noted that studies often fail to report a
summary of the follow-up (43).

Item 13b. Describe the characteristics of the
participants (basic demographics, clinical features,
available predictors), including the number of par-
ticipants with missing data for predictors and out-
come. [D;V]

Examples
See Tables 5 and 6.

Explanation
A clear description of the distribution (prevalence,

mean or median with standard deviation, or interquar-
tile range) of the relevant characteristics of the study
participants is important to judge the context, case mix,
and setting of the study. Readers can judge whether
the prediction model can potentially be validated in
their data or even applied to their patients. It is not
sufficient to report only the study inclusion criteria. In-
formation should ideally be provided for all predictors,
particularly those included in the final model, and also
other important variables (such as demographic, clini-
cal, or setting). Furthermore, the ranges of all continu-
ous predictors, particularly those in the final model,
should be clearly reported. In the absence of knowing
the predictor ranges, it is unclear to whom the model
may be applicable (item 15a).

The above information can most efficiently be
shown in a table, which should also incorporate the
number (percentage) of missing observations for each

variable (see Table 4). If missing observations occur for
just a few study variables, the information can be sum-
marized in the text.

It is useful also to incorporate descriptive informa-
tion about the outcome and, if a univariable analysis is

Table 5. Example Table: Participant Characteristics

Characteristic Missing
Values,
n (%)

Value

Patients with confirmed PE 0 222 (23.0%)

General characteristics
Mean age 0 60.6 y (SD, 19.4)
Mean weight 83 (8.6) 72.6 kg (SD, 16.1)
Men 0 403 (41.8%)

Risk factors
Patients with family history

of DVT or PE
6 (0.6) 102 (10.6%)

Patients with personal
history of DVT or PE

2 (0.2) 166 (17.2%)

Patients with known
congestive heart failure

0 95 (9.8%)

Patients with previous
stroke

0 29 (3.0%)

Patients with COPD 0 99 (10.3%)
Patients who had surgery,

fracture, or both within 1
mo

0 67 (6.9%)

Patients who were
immobile within 1 mo

0 165 (17.1%)

Patients with active
malignant condition

3 (0.3) 89 (9.2%)

Patients currently using
oral contraceptive

1 (0.1) 69 (7.2%)

Pregnant or postpartum
patients

0 10 (1.0%)

Symptoms
Patients with syncope 2 (0.2) 68 (7.0%)
Patients with recent cough 0 197 (20.4%)
Patients with hemoptysis 0 43 (4.5%)
Patients with dyspnea 0 637 (66.0%)
Patients with chest pain 0 681 (70.6%)
Patients with unilateral

lower-limb pain
0 138 (14.3%)

Clinical examination
General signs
Mean central temperature 37 (3.8) 36.9 °C (SD, 0.8)
Mean heart rate 4 (0.4) 86.3 beats/min (SD, 19.7)
Mean respiratory rate 59 (6.1) 20.2 cycles/min (SD, 7.0)
Mean systolic blood

pressure
6 (0.6) 140 mm Hg (SD, 23)

Mean diastolic blood
pressure

7 (0.7) 81 mm Hg (SD, 15)

Signs related to PE
Patients with chronic

venous insufficiency
3 (0.3) 199 (20.6%)

Patients with varicose
veins

15 (1.6) 227 (23.5%)

Patients with unilateral
edema and pain on
deep venous palpation

0 51 (5.3%)

Patients with abnormal
chest auscultation

2 (0.2) 158 (16.4%)

Patients with neck vein
distention

2 (0.2) 108 (11.2%)

COPD = chronic obstructive pulmonary disease; DVT = deep venous
thrombosis; PE = pulmonary embolism.
From reference 395.
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done, to show summary statistics of the predictors and
other relevant study variables across the different out-
come categories (item 14b). Alternatively, one may
show the outcome frequencies across predictor
categories.

There is no evidence to suggest the reporting of
participant characteristics or predictors is particularly
poor. However, a few systematic reviews have identi-
fied studies that have failed to report such key informa-
tion (43, 62, 71, 72, 122). In a recent review of 78 ex-
ternal validation studies evaluating the performance of
120 prediction models, the ranges of continuous pre-
dictors were reported in only 8% (10 of 120) of original
studies developing the prediction model (122).

Item 13c. For validation, show a comparison
with the development data of the distribution of
important variables (demographics, predictors,
and outcome). [V]

Examples
See Tables 7 and 8.

Explanation
A prediction model validation study is commonly

done in participants similar to those in the original
model development study (19, 20, 26, 28, 33). How-
ever, as discussed in item 12, the validation study pop-
ulation may differ intentionally from the development
study. It is important to present demographic charac-
teristics, predictors in the model, and outcome of the
(validation) study participants, along with those re-
ported in the original development study. Such infor-
mation can most efficiently be presented in a table
showing the distributions of these variables in the total
samples, supplemented by specific participant groups
(for example, by sex) if relevant. It is also helpful to

report the number of missing observations for each of
these variables in both data sets.

One might argue that for very well-known and
long-existing models (such as the APACHE risk score or
Framingham risk score), such comparison might not be
needed. However, not all readers may be as familiar
with these models, and comparison between the vali-
dation and original development data sets, or perhaps
even previous validation studies, is still recommended.

Finally, if unintentional, authors should explain the
reasons for any notable differences between the valida-
tion samples and the previous study samples (item 12),
and later in the article consider the possible implica-
tions on the found results, such as the model's predic-
tive performance in the validation set (items 16 and 18).

In a recent systematic review of 78 external valida-
tion studies (including development studies with an ex-
ternal validation), only 31 (40%) compared or discussed
the characteristics of both the original development
and external validation cohorts (122).

Model Development
Item 14a. Specify the number of participants

and outcome events in each analysis. [D]

Examples
See Tables 9 and 10.

Explanation
As noted in item 8, the effective sample size in

studies of prediction is the number of events and not
the number of participants. The number of participants
with the event relative to the number of predictors ex-
amined plays a central role when assessing the risk for
overfitting in a particular study (items 8 and 10b).

In the presence of missing data, the number of par-
ticipants and events will often vary across analyses, un-
less participants with any missing data are excluded or
their data presented after any imputation (item 9).
When deriving a new prediction model, authors fre-
quently conduct analyses to examine the unadjusted
association (often referred to as univariable or bivari-
able association) between a predictor and the outcome
(item 14b). In these instances, if participants have any
missing data and are excluded from the analyses (pair-
wise deletion), the number of participants will vary for
the unadjusted association between each predictor
and the outcome. Therefore, if univariable associations
are reported, the number of participants without miss-
ing values for each predictor and the corresponding
number of events in those participants should be pre-
sented.

Similarly, authors may derive or compare the per-
formance of more than 1 multivariable model on the
same data set. For example, one model might be
based on routinely available predictors, and a second
model might include additional predictors that are not
routinely available (such as the result of a blood test). It
is important to know the sample size and the number of
events used to derive all models.

Readers need a clear understanding of which par-
ticipants were included in each analysis. In particular,
for studies developing a new prediction model, report-

Table 6. Example Table: Participant Characteristics

Characteristic All
Patients
(n � 202)

TB*
(n � 72)

No TB
(n � 130)

P
Value

Median age (IQR), y 32 (28–39) 32 (28–39) 33 (28–40) 0.59
Female sex, % 113 (56) 38 (53) 75 (58) 0.50
Newly diagnosed

with HIV, %
53 (26) 14 (19) 39 (30) 0.10

Median CD4 count
(IQR), cells/μL†

64 (23-191) 60 (70-148) 74 (26-213) 0.17

Taking
cotrimoxazole
prophylaxis, %‡

117 (58) 48 (67) 69 (53) 0.061

Taking antiretroviral
therapy, %§

36 (18) 15 (21) 21 (16) 0.41

Took antibiotics
before admission,
%

134 (66) 51 (71) 83 (64) 0.31

2-month mortality,
%¶

58 (32) 27 (42) 31 (26) 0.028

IQR = interquartile range; TB = tuberculosis.
From reference 396.
* Defined by any positive sputum or bronchoalveolar lavage mycobac-
terial culture on solid media.
† 4 responses missing.
‡ All but 1 patient had been taking cotrimoxazole for ≥1 month.
§ All patients reported taking antiretroviral therapy for ≥1 month.
¶ 8 patients with TB and 12 patients without TB were lost to follow-up.
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ing the number of events used to derive the model
permits calculation of indicators of overfitting, such as
EPV (items 8 and 10b). For development studies that
have split the data into a development and validation
data set, reporting the number of participants and out-
come events for each data set is important.

Item 14b. If done, report the unadjusted asso-
ciation between each candidate predictor and out-
come. [D]

Examples
See Table 11.

Explanation
Univariable analyses might be desirable to allow

the reader confirmation of expected predictive rela-
tions based on previous studies, and to observe differ-
ences in a predictor's predictive accuracy from unad-

justed (univariable) to adjusted (multivariable) analysis.
This is for the same reasons as advocated for etiologic
(causal) and nonrandomized intervention research,
where both the so-called crude and adjusted associa-
tionsarecommonlyreported(97,401).Theseunadjusted
results are a baseline against which to compare the ad-
justed results in the final multivariable prediction model.

For univariable analyses of binary endpoints (for
example, 30-day mortality), authors should report risk
ratios or odds ratios accompanied by confidence inter-
vals. Similarly, for time-to-event outcomes, authors
should report hazard ratios and associated confidence
intervals. P values may also be presented, although
they do not provide additional information beyond
confidence intervals. Typically, such analyses are re-
ported in tabular form, preferably in combination with
the results (predictor–outcome associations) from the
multivariable analysis.

Table 7. Example Table: Comparison of Participant Characteristics in Development and Validation Data [Development;
Validation]

Characteristic Derivation Cohort
(n � 8820)

Internal Validation Cohort
(n � 5882)

External Validation Cohort
(n � 2938)

Demographic
Median age (IQR), y 66 (56–74) 66 (57–75) 64 (55–72)
Male sex, n (%) 5430 (61.6) 3675 (62.5) 1927 (65.5)

Vascular risk factor, n (%)
Hypertension 5601 (63.5) 3683 (62.6) 1987 (67.6)
Diabetes mellitus 1834 (20.8) 1287 (21.9) 720 (24.5)
Dyslipidemia 947 (10.7) 637 (10.8) 386 (13.1)
Atrial fibrillation 643 (7.3) 415 (7.1) 175 (6.0)
Coronary artery disease 1222 (13.9) 811 (13.8) 285 (9.7)
Peripheral artery disease 64 (0.7) 29 (0.5) 26 (0.9)
History of stroke/TIA 2795 (31.7) 1822 (31.0) 809 (27.5)
Smoking 3510 (39.8) 2326 (39.5) 1022 (34.8)
Heavy alcohol consumption 1346 (15.3) 921 (15.7) 372 (12.7)

Other coexistent condition, n (%)
Congestive heart failure 169 (1.9) 121 (2.1) 24 (0.8)
Valvular heart disease 213 (2.4) 139 (2.4) 40 (1.4)
Chronic obstructive pulmonary disease 98 (1.1) 64 (1.1) 12 (0.4)
Hepatic cirrhosis 29 (0.3) 21 (0.4) 7 (0.2)
Peptic ulcer or previous GIB 283 (3.2) 195 (3.3) 76 (2.6)
Renal failure 7 (0.1) 4 (0.1) 3 (0.1)
Arthritis 266 (3.0) 176 (3.0) 45 (1.5)
Dementia 113 (1.3) 82 (1.4) 18 (0.6)
Cancer 150 (1.7) 109 (1.9) 54 (1.8)

Prestroke dependence (mRS ≥3), n (%) 809 (9.2) 535 (9.1) 0 (0.0)
Preadmission antiplatelet therapy, n (%) 1449 (16.4) 932 (15.8) 357 (12.2)
Preadmission anticoagulation therapy, n (%) 210 (2.4) 122 (2.1) 26 (0.9)
Median admission NIHSS score (IQR) 5 (2–9) 5 (2–9) 4 (2–8)
Median admission GCS score (IQR) 15 (14–15) 15 (14–15) 15 (15–15)
Median admission SBP (IQR), mm Hg 150 (134–163) 150 (135–162) 150 (135–167)
Median admission DBP (IQR), mm Hg 89 (80–95) 89 (80–95) 90 (80–98)
OCSP subtype, n (%)

Partial anterior circulation infarction 4834 (54.8) 3327 (56.6) 1829 (62.3)
Total anterior circulation infarction 811 (9.2) 519 (8.8) 176 (6.0)
Lacunar infarction 1667 (18.9) 1074 (18.3) 246 (8.4)
Posterior circulation infarction 1508 (17.1) 962 (18.4) 687 (23.4)

Intravenous tPA within 3 h after onset, n (%) 108 (1.2) 73 (1.2) 137 (4.6)
Antithrombotic therapy on admission, n (%) 7371 (83.6) 4950 (84.2) 2550 (86.8)
Anticoagulation therapy on admission, n (%) 210 (2.4) 122 (2.1) 159 (5.4)
Median length of hospital stay (IQR), d 14 (10–20) 14 (10–20) 14 (11–18)
In-hospital GIB, n (%) 227 (2.6) 135 (2.3) 44 (1.5)

DBP = diastolic blood pressure; GCS = Glasgow Coma Score; GIB = gastrointestinal bleeding; IQR = interquartile range; mRS = modified Rankin
Scale; NIHSS = National Institutes of Health Stroke Score; OCSP = Oxfordshire Community Stroke Project; SBP = systolic blood pressure; TIA =
transient ischemic attack; tPA = tissue plasminogen activator.
From reference 397.
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Authors should also provide number of partici-
pants included in each of the unadjusted analyses, if
missing data are present (item 14a). For dichotomous
or categorical predictors, authors should report how
many participants experienced the outcome of interest
per category.

However, we follow previous authors in advising
against choosing predictors for inclusion into the mul-
tivariable model development on the basis of the un-

adjusted associations of each predictor with the out-
come (2, 112, 235) (item 10b).

Model Specification

Item 15a. Present the full prediction model to
allow predictions for individuals (i.e., all regression
coefficients, and model intercept or baseline sur-
vival at a given time point). [D]

Table 8. Example Table: Comparison of Participant Characteristics in Development and Validation Data [Validation]

Risk Predictor QRESEARCH THIN (External Validation)*

Development
(n � 2 355 719)

Internal Validation
(n � 1 238 971)

Women
(n � 1 077 977)

Men
(n � 1 062 217)

Overall
(n � 2 140 194)

Median age (SD), y 50.1 (15.0) 50.1 (15.0) 49 (15.1) 47 (14.2) 48 (14.7)
Smoking status, n (%)

Nonsmoker 1 194 692 (50.7) 624 788 (50.4) 477 785 (44.3) 369 315 (34.8) 847 100 (39.6)
Ex-smoker 427 246 (18.1) 229 516 (18.5) 123 037 (11.4) 155 961 (14.7) 278 998 (13.0)
Current smoker, amount not recorded 71 416 (3.0) 39 231 (3.2) 166 812 (15.5) 143 533 (13.5) 310 345 (14.5)
Light smoker (<10 cigarettes/d) 148 063 (6.3) 79 844 (6.4) 70 298 (6.5) 66 858 (6.3) 137 156 (6.4)
Moderate smoker (10–19 cigarettes/d) 179 931 (7.6) 95 754 (7.7) 106 203 (9.9) 102 868 (9.7) 209 071 (9.8)
Heavy smoker (≥ 20 cigarettes/d) 133 980 (5.7) 73 554 (5.9) 75 209 (7.0) 113 887 (10.7) 189 096 (8.8)
Not recorded 200 391 (8.5) 96 284 (7.8) 58 633 (5.4) 109 795 (10.3) 168 428 (7.9)

Current symptoms and symptoms in the
preceding year, n (%)

Current dysphagia 15 021 (0.6) 8165 (0.7) 10 391 (1.0) 8846 (0.8) 19 237 (0.9)
Current hematemesis 12 952 (0.5) 7119 (0.6) 4630 (0.4) 6162 (0.6) 10 792 (0.5)
Current abdominal pain 225 543 (9.6) 126 161 (10.2) 144 266 (13.4) 102 732 (9.7) 246 998 (11.5)
Current appetite loss 9978 (0.4) 6133 (0.5) 3317 (0.3) 2521 (0.2) 5838 (0.3)
Current weight loss 9998 (0.4) 5377 (0.4) 15 465 (1.4) 12 938 (1.2) 28 403 (1.3)
Hemoglobin <11 g/dL recorded in
the last year

22 576 (1.0) 12 638 (1.0) 13 792 (1.3) 4563 (0.4) 18 355 (0.9)

THIN = The Health Improvement Network.
From reference 390.
* Compared with the original development cohort, the THIN cohort had more patients reporting abdominal pain and weight loss.

Table 9. Example Table: Reporting the Sample Size and Number of Events for Multiple Models*

Model A Model B

Men Women Men Women

Derivation cohort model estimates
N 13 240 15 311 12 075 13 935
Number of events 466 215 425 189

Beta Beta Beta Beta
Age (1 y) 0.053 0.080 0.241 0.066
Smoker 0.466 0.776 2.453 0.784
Body mass index – – – –
Diabetes – – 0.528 0.778
SBP (10 mm Hg) – – 0.888 0.038
Total cholesterol (10 mg/dL) – – 0.061 0.077
HDL cholesterol (10 mg/dL) – – −0.211 −0.272
Hypertension treatment by SBP >120 mm Hg – – 0.519 0.133
Age by smoking – – −0.034 –
Age by SBP – – −0.013 –
Cox 10-year event-free survival (%) 96.2 98.7 96.9 99.0
C-statistic 66.3 72.0 72.0 76.7

Model assessment in the validation cohort
N 7955 9481 7955 9481
Number of events 263 147 263 147
C-statistic 66.0 69.6 71.0 73.8

HDL = high-density lipoprotein; SBP = systolic blood pressure.
From reference 398.
* �-Coefficients for the variables included in the simplified (model A) and complete (model B) models fitted in the derivation cohort for myocardial
infarction or angina, and models' performance in the validation cohort by sex.
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Examples
See Tables 12, 13, and 14.

Explanation
Prediction models should be presented in ade-

quate detail to allow predictions for individuals, either
for subsequent validation studies or in clinical practice
(item 15b). For a binary outcome, this means present-
ing the regression coefficient or odds ratio for each
predictor in the model and the intercept. It is good
general practice also to report confidence intervals for
each estimated coefficient (403), although these are
not used in a validation study or in clinical practice. The
same considerations apply to a parametric survival
model for prognostic (long-term) time-to-event out-
comes. If shrinkage methods have been used (item
10b), then both the original and shrunken regression
coefficients should be reported.

The situation is rather different for the ubiquitous
semi-parametric Cox regression model for a time-to-
event outcome. Authors should present the regression

coefficient or hazard ratio for each predictor in the
model, along with its confidence interval. However, the
Cox model has no intercept, and individual survival
probabilities are estimated relative to an unspecified
baseline survival function. Probabilities thus cannot be
estimated from the regression coefficients alone.

To allow estimation of outcome probabilities for in-
dividuals at a specific time point, authors should report
the cumulative baseline hazard (or baseline survival) for
1 or more clinically relevant time points (item 15b). In
cardiovascular and oncologic research, 5-year or 10-
year survival is often chosen, but other time points may
also be relevant. Alternatively, authors developing pre-
diction models using Cox regression should consider
estimating and reporting the baseline hazard function
using fractional polynomials or restricted cubic splines
(297, 309, 373, 404).

It may not be easy to provide full details of a com-
plex model (for example, the ICNARC model [405]). In
other cases, models are updated regularly and contin-
ually made available on the Web rather than explicitly

Table 10. Example Table: Reporting the Number of Events in Each Unadjusted Analysis

Characteristic CDI Patients
(n � 395), n (%)

Severe Course Due
to CDI, n (%)*

Odds Ratio
(95% CI)

P Value

Yes No

Demographic
Age

<49 y 85 (22) 6 (13) 79 (23) 1 (reference) 0.01
50–84 y 275 (70) 31 (67) 237 (70) 1.72 (0.69–4.28)
>85 y 35 (9) 9 (20) 23 (7) 5.15 (1.66–16.0)

Male sex 220 (56) 24 (52) 191 (56) 0.85 (0.46–1.57) 0.59
Academic hospital 266 (67) 23 (50) 239 (71) 0.42 (0.22–0.28) 0.01
Department of diagnosis

Other departments 293 (74) 35 (76) 251 (74) 1 (reference) <0.01
Surgery 83 (21) 4 (9) 78 (23) 0.37 (0.13–1.07)
Intensive care unit 19 (5) 7 (15) 10 (3) 5.02 (1.80–14.0)

Medication and intervention history†
Cytostatic agents 64 (16) 7 (15) 55 (16) 0.91 (0.39–2.15) 0.84
Immunosuppressive agents 172 (44) 21 (47) 146 (44) 1.13 (0.60–2.10) 0.71
Proton pump inhibitors 251 (64) 34 (76) 211 (63) 1.82 (0.89–3.71) 0.10
Recent abdominal surgery 110 (28) 4 (9) 105 (31) 0.21 (0.07–0.59) <0.01
Recent admission 210 (55) 28 (61) 177 (54) 1.37 (0.71–2.49) 0.38
Antibiotic agents 335 (85) 34 (74) 293 (87) 0.44 (0.21–0.90) 0.03

Clinical
Charlson Index

0 59 (15) 7 (15) 52 (15) 1 (reference) 0.53
1–2 150 (38) 14 (30) 134 (40) 0.78 (0.30–2.03)
3–4 120 (31) 15 (33) 101 (30) 1.10 (0.42–2.87)
>5 64 (16) 10 (22) 50 (15) 1.49 (0.53–4.21)

Diarrhea as reason for admission 104 (27) 23 (50) 78 (23) 3.31 (1.76–6.22) <0.01
Healthcare-onset diarrhea 283 (72) 28 (61) 248 (74) 0.55 (0.29–1.04) 0.06
Fever 208 (60) 25 (66) 174 (59) 1.36 (0.67–2.76) 0.40
Hypotension 117 (30) 25 (63) 88 (30) 3.86 (1.94–7.68) <0.01
Bloody diarrhea (macroscopic) 52 (15) 7 (16) 44 (15) 1.14 (0.48–2.71) 0.77

Laboratory
Creatinine count before start of diarrhea

<90 199 (58) 17 (43) 178 (61) 1 (reference) 0.05
>90 109 (32) 16 (40) 89 (30) 1.88 (0.91–3.90)

Dialysis 33 (10) 7 (18) 25 (9) 2.93 (1.11–7.77)

CDI = Clostridium difficile infection.
From reference 399.
* Outcome is missing for 10 patients (2.5%); therefore the maximum number of patients is 46 with a severe course and 339 without a severe course.
† Medication and intervention history was gathered from the 3 months before the start of diarrhea.
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stated in journal articles (for example, QRISK2 [139]).
Regardless of model complexity or frequency of model
updating, we strongly recommend the specification of
the full model in the peer-reviewed article or in a Web
appendix. If the details of a model remain unpublished,
it can never be validated, and indeed it is highly ques-
tionable whether such a model should be considered
for clinical use (312, 314, 406).

In addition to reporting the explicit formula of the
developed model, it is essential to know how all pre-
dictors were coded (see also item 7a). The measure-
ment scale for all continuous predictors should be re-
ported (for example, whether waist circumference is
measured in centimeters or inches). If continuous pre-
dictors have been categorized (item 10a and Box E),
then the cut points of all categories should be re-

ported, including the lower and upper limit of the first
and last category respectively, which are frequently not
reported. For categorical predictors, authors should
clearly indicate how these have been coded—for exam-
ple, for sex, with women coded as 0 and men as 1.

Furthermore, the ranges of all continuous predic-
tors should be clearly reported. In the absence of
knowing the predictor ranges, it is unclear in whom the
model may be applicable. For example, application of
a prediction model that was developed by using partic-

Table 11. Example Table: Unadjusted Association Between Each Predictor and Outcome*

Characteristic Patients With
an Outcome
(n � 399)

Patients Without
an Outcome
(n � 15 881)

Univariate
Odds Ratio
(95% CI)

Multivariable
Odds Ratio
(95% CI)

P Value

Demographic
Mean age (SD), y 81 (8) 75 (8) 1.8 (1.6–1.9) 1.6 (1.4–1.8) <0.001
Male 41 38 1.2 (1.0–1.4) 1.3 (1.1–1.7) 0.008

Previous health care use
Previous hospitalization due to

pneumonia or influenza
16 1 22.4 (16.3–30.6) 8.1 (5.7–11.5) <0.001

Mean outpatient visits (SD), n 26 (27) 11 (14) 2.4 (2.1–2.7) 1.5 (1.3–1.8) <0.001

Comorbid condition
Heart disease 50 24 3.2 (2.6–3.8) 1.2 (1.0–1.5) 0.10
Pulmonary disease 40 14 4.1 (3.3–5.0) 1.8 (1.4–2.3) <0.001
Dementia or stroke 31 9 4.6 (3.7–5.8) 2.1 (1.6–2.7) <0.001
Renal disease 13 4 4.0 (2.9–5.4) 1.5 (1.1–2.1) 0.02
Cancer 12 2 6.8 (4.9–9.4) 4.9 (3.4–7.0) <0.001
Diabetes 19 12 1.8 (1.4–2.3) – –
Anemia 24 8 3.7 (2.9–4.7) – –
Nutritional deficiency 5 2 3.7 (2.4–5.9) – –
Vasculitis or rheumatologic disease 3 2 1.3 (0.7–1.3) – –
Immunodeficiency 2 1 2.0 (1.0–4.0) – –
Cirrhosis 1 0.3 3.1 (1.1–8.7) – –

From reference 400.
* Data are the percentage of patients, unless otherwise noted.

Table 12. Example Table: Presenting the Full Prognostic
(Survival) Model, Including the Baseline Survival, for a
Specific Time Point*

� Coefficient SE P Value

Age 0.15052 0.05767 0.009
Age2 −0.00038 0.00041 0.35
Male sex 1.99406 0.39326 0.0001
Body mass index 0.01930 0.01111 0.08
Systolic blood pressure 0.00615 0.00225 0.006
Treatment for hypertension 0.42410 0.10104 0.0001
PR interval 0.00707 0.00170 0.0001
Significant cardiac murmur 3.79586 1.33532 0.005
Heart failure 9.42833 2.26981 0.0001
Male sex × age2 −0.00028 0.00008 0.0004
Age × significant murmur −0.04238 0.01904 0.03
Age × prevalent heart failure −0.12307 0.03345 0.0002

From reference 402.
* S0(10) = 0.96337 (10-year baseline survival). � values are expressed
per 1-unit increase for continuous variables and for the condition pres-
ent in dichotomous variables.

Table 13. Example Table: Presenting the Full Diagnostic
(Logistic) Model, Including the Intercept*

Intercept and Predictors �† Odds
Ratio

95% CI

Intercept −3.66
Traditional baker 0.67 2.2 1.2–3.9
Nasoconjunctival symptoms in

the past 12 mo
0.72 2.3 1.2–4.5

Asthma symptoms in the past
12 mo

0.63 2.0 0.9–4.4

Shortness of breath and wheeze 0.61 2.3 1.3–3.8
Work-related upper respiratory

symptoms
0.47 1.7 0.9–3.1

Work-related lower respiratory
symptoms

0.61 2.2 1.1–4.4

ROC area (95% CI) 0.75 (0.71–0.81)

ROC = receiver-operating characteristic.
From reference 319.
* The predicted probability of wheat sensitization can be calculated
using the following formula: P(sensitization) 1/(1 exp(–(–3.66 + tradi-
tional baker × 0.67 + nasoconjunctival symptoms in the past 12 mo ×
0.72 + asthma symptoms in the past 12 mo × 0.63 + shortness of
breath and wheeze × 0.61 + work-related upper respiratory
symptoms × 0.47 + work-related lower respiratory symptoms × 0.61))).
Predictor value is one when present and zero when absent.
† Regression coefficient multiplied with a shrinkage factor (obtained
from the bootstrapping procedure) of 0.89.
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ipants aged 30 to 60 years to an individual aged 65
years is extrapolation (186).

Numerous systematic reviews have found that stud-
ies often report insufficient information to allow for val-
idation or application of the model on other individuals
(43, 62, 66, 88). For example, only 13 of 54 (24%) stud-
ies developing prognostic models for breast cancer
(43) and 22 of 41 (54%) of models for predicting mor-
tality in very premature infants (66) reported sufficient
information for that purpose. Another review reported
that none of the included studies presented the ranges
of the continuous predictors in the models (53), and 2

recent systematic reviews found that even age ranges
were frequently not reported (73, 74).

Item 15b. Explain how to use the prediction
model. [D]

Examples
See Tables 15 to 17 and Figures 5 to 7.
Explanation
To allow individualized predictions, authors should

explain how the developed model can be used to ob-
tain predicted outcome probabilities or risks for an in-
dividual. Regression models yield a linear predictor,
the weighted sum of the values of the predictors in the
model (as measurement or codes), where the weights
are the regression coefficients (item 15a). In the prog-
nostic context, the linear predictor is often called a
prognostic index. The regression coefficients from lo-
gistic regression are log odds ratios; for Cox models,
they are log hazard ratios. Regression models also in-
clude an intercept (constant), except for the Cox model
for time-to-event data.

The predicted probability of the outcome can be
evaluated from any combination of predictor values.
For a logistic regression model, the predicted probabil-
ity of the outcome event is

probability = exp(�1X1 + �xX2 + . . . + �kXk)/

(1 + exp(�1X1 + �xX2 + . . . + �kXk))

= 1/(1 + exp(−(�1X1 + �xX2 + . . . + �kXk)))

where �j is the regression coefficient for predictor Xj
and �0 is the model intercept. It can help readers to
provide this expression explicitly. Multiplying by 100

Table 14. Example Table: Presenting Both the Original
and Updated Prediction Model

Predictor Original
Model

Updated
Model

Age (years) −0.022 −0.017
Female sex 0.46 0.36
Current smoking −0.63 −0.50
History of PONV or motion sickness 0.76 0.60
Lower abdominal or middle-ear surgery 0.61 –
Abdominal or middle-ear surgery* – 0.48
Isoflurane and/or nitrous oxide anesthesia† 0.72 –
Inhalational anesthesia‡ – 0.35
Outpatient surgery§ – −1.16
Intercept 0.15 0.12

PONV = postoperative nausea and vomiting.
From reference 187.
* In the updated model . . . this predictor replaced "lower abdominal
or middle-ear surgery" from the original model. In the updated model
. . . it included lower abdominal, upper abdominal, and laparoscopic
surgery in addition to middle-ear surgery.
† As compared with intravenous anesthesia using propofol.
‡ As compared with intravenous anesthesia using propofol. In the up-
dated model . . . this predictor replaced "isoflurane and/or nitrous ox-
ide anesthesia" from the original model.
§ Predictor not included in the original model.

Table 15. Example Table: Presenting a Full Model, Including Baseline Survival for a Specific Time Point Combined With a
Hypothetical Individual to Illustrate How the Model Yields an Individualized Prediction

[Simplified] Model B, the Reynolds Risk Score

10-year cardiovascular disease risk (%) = [1 − 0.98634(exp[B−22.325])] × 100%, where B = 0.0799 × age + 3.137 × natural logarithm (systolic blood pressure) +
0.180 × natural logarithm (high-sensitivity C-reactive protein) + 1.382 × natural logarithm (total cholesterol) − 1.72 × natural logarithm (high-density
lipoprotein cholesterol) + 0.134 × hemoglobin A1c (%) (if diabetic) + 0.818 (if current smoker) + 0.438 (if family history of premature myocardial infarction)

Clinical Example: Estimated 10-Year Risk for a 50-Year-Old Smoking Woman Without Diabetes, According to ATP III or to Clinical Simplified Model
B (the Reynolds Risk Score)

Clinical Variables Estimated 10-Year Risk, %

Blood Pressure, mm Hg Cholesterol, mg/dL* hsCRP, mg/L Parental History† ATP III Model Simplified Model B

Total HDL Non-HDL

155/85 240 35 205 0.1 No 11.5 4.9
155/85 240 35 205 0.5 No 11.5 6.5
155/85 240 35 205 1.0 No 11.5 7.4
155/85 240 35 205 3.0 No 11.5 8.9
155/85 240 35 205 5.0 No 11.5 9.7
155/85 240 35 205 8.0 No 11.5 10.5
155/85 240 35 205 10.0 No 11.5 10.9
155/85 240 35 205 20.0 No 11.5 12.3

ATP = Adult Treatment Panel; HDL = high-density lipoprotein; hsCRP = high-sensitivity C-reactive protein.
From reference 208.
To convert cholesterol from mg/dL to mmol/L, multiply by 0.0259.
† Parental myocardial infarction event before age 60 years.
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converts the probability into a percent risk (% risk =
100 × probability).

For prognostic models based on Cox regression,
the predicted probability of the outcome occurring by
a particular follow-up time t requires the prognostic in-
dex and also the estimated “baseline survival”, S0(t)
(112, 274, 411). The predicted survival probability is
then calculated as S0(t)exp(�1X1+�2X2+ . . . +�kXk), and the
predicted probability of the outcome event as
1�S0(t)exp(�1X1+�2X2+ . . . +�kXk). These quantities can be
multiplied by 100 to convert to percentages.

Studies developing new prediction models fre-
quently aim to produce an easy-to-use simplified
model or scoring system (45, 53), often referred to as a
bedside model. By “simplified model or scoring sys-
tem,” we mean a simplified presentation format of the
underlying regression model (rather than a reduced
model in terms of fewer predictors, which is covered in
item 10b). Many well-known prediction models have
been transformed or simplified to ease their use in
practice, such as the SCORE model for predicting the
10-year risk of fatal cardiovascular disease (140) or the
Wells model for diagnosis of pulmonary embolism
(412). Simplification may be done in several ways, for
example by converting (such as rounding [413]) the re-
gression coefficients for each predictor in the final
model to easy-to-sum integers that are then related to
outcome or survival probabilities, as shown in the ex-
amples above (414). An extreme form of rounding of

regression coefficients is to give each predictor in the
final model the same weight, and simply count the
number of risk factors present. These easy-to-sum
scores and corresponding outcome probabilities can
be shown in tables or in graphs, as illustrated above.

Any simplification of a developed prediction model
will, owing to the rounding, lead to some loss of pre-
dictive accuracy (1, 413). Hence, when authors convert
an original model formula to a simplified scoring rule, it
is useful to report the predictive accuracy measures (for
example, the c-index) (items 10d and 16) before and
after simplification. The reader may then judge to what
extent the use of the simplified model leads a loss in
predictive accuracy. If done, the simplified scoring
must be based on the original scale of the regression
coefficients (that is, log odds or log hazard scale) and
not on any transformation of these coefficients, such as
odds ratios or hazard ratios (415). In particular, for pre-
dictors with an associated odds or hazard ratio of 1 or
less (that is, with a null or a protective/negative effect
on the outcome), careful thought is required on how
scores are assigned. In these instances, assigning a
positive score will actually increase the overall score,
indicating a higher likelihood of disease occurrence,
whereas the associated contribution should be lower.

If a simplified scoring system is developed, authors
should clearly detail the steps taken to create the sim-
plified model and provide a clear description of how
the score from the simplified model relates to outcome
probabilities. The scoring system can clearly be pre-
sented in a table or chart, along with possible scores
and their associated outcome probabilities. The values
from a simplified model may be grouped to create risk
or probability groups (item 11). In these instances, par-
ticipants with values from the model in a particular
range are all assigned to the same risk group, and thus
all assigned the same risk. However, merely indicating
that a participant is (for example) low, intermediate, or
high risk, without quantifying the actual predicted risk
associated with the each of the groups, is uninforma-
tive; score groups should be related to the correspond-
ing (mean or range of) outcome probabilities, which
could be the observed or predicted risks, or both.

Table 16. Example Table: A Simple Scoring System From
Which Individual Outcome Risks (Probabilities) Can Be
Obtained*

To facilitate the calculation of an individual worker's risk, we developed a
score chart. We multiplied the regression coefficients by 4 and rounded
them to the nearest integer to form the scores for each of the predictors.
The scores of predictors which are reviewed positively are added to
calculate the “total score.” This total score corresponds to risk for sick
leave during follow-up.

Total
Score

Risk

Sick leave in the preceding 2 months
None 0 . . . ≤1 10%–20%
0–1 week 2 . . . 2–3 20%–30%
>1 week 3 . . . 4–5 30%–40%

Intensity of shoulder pain (0–10) 6–7 40%–50%
0–3 points 0 . . . 8 50%–60%
4–6 points 2 . . . 9–10 60%–70%
7–10 points 3 . . . 11–12 70%–80%

Perceived cause: strain or overuse
during regular activities

3 . . . 13–15 80%–90%

Reported psychological problems
(anxiety, distress, depression)

6 . . .

+

Total score . . .

From reference 407.
* The predicted probability of sick leave during 6 months was deter-
mined by P = 1/[1+ exp – (–1.72 + 0.53 × sick leave 0–1 week + 0.77 ×
sick leave >1 week + 0.50 × shoulder pain (4–6 points) + 0.65 ×
shoulder pain (7–10 points) + 0.68 × overuse due to usual activities +
1.38 × concomitant psychological problems)]. Instruction: If a predic-
tor is scored positively, the given weight needs to be filled in. Subse-
quently the scores are added to calculate the 'Total score'. Using the
table next to the score chart the risk (%) of sick leave for an individual
patient can be determined based on his/her total score.

Table 17. Example Table: Providing Full Detail to
Calculate a Predicted Probability in an Individual

The resulting logit model after fitting to the training data can be
expressed as

log� Psuccess

1 − Psuccess
� = 2.66 + 1.48IncompMisc − 1.63NilBleeding − 0.07Age

where Psuccess denotes the probability for a patient to have a successful
expectant management. IncompMisc has value of 1 if the diagnosis at
primary scan is incomplete miscarriage and 0 otherwise. NilBleeding is 1
if there is neither vaginal bleeding nor clots and 0 otherwise.
Alternatively, the model can be represented in the following form for
calculating the predictive probability for a patient to have a successful
expectant management:

Psuccess =
e2.66 +1.48IncompMisc − 1.63NilBleeding − 0.07Age

1 + e2.66 + 1.48IncompMisc − 1.63NilBleeding − 0.07Age

Information from reference 409.
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Figure 5. Example figure: a scoring system combined with a figure to obtain predicted probabilities for each score in an 
individual.
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Reproduced from reference 408, with permission from BMJ Publishing Group.
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For survival models, Kaplan–Meier curves should
be presented for each risk group, because they provide
a natural description of variation in prognosis (for ex-
ample, discrimination). Kaplan–Meier curves can use-
fully be supplemented by the total number of patients,
the number of patients with the outcome, and a sum-
mary of the time to event (with confidence intervals) for
each group.

Prediction models are sometimes presented as no-
mograms (310). This presentation format is not a sim-
plification of a developed model, but rather a graphical
presentation of the original mathematical regression
formula (112). Such a format may be unfamiliar to many
readers and potential users; therefore, it is important to
provide a clear description on how to use the nomo-
gram to obtain a prediction for an individual. A nomo-
gram is not a substitute for fully reporting the regres-
sion equation (item 15a).

Finally, presenting clinical scenarios and giving a
worked example of applying the prediction model to a
hypothetical individual with a particular predictor pro-
file may be instructive regardless of how the model is
presented.

Model Performance

Item 16. Report performance measures (with
confidence intervals) for the prediction model. [D;V]

Examples
See Figures 8 to 10 and Table 18.

Explanation
All performance measures described in the Meth-

ods section (item 10d) should be reported in the Re-
sults section, preferably with confidence intervals. If
multiple models were developed or evaluated, then
the performance measures for each model should be
reported. For model development studies, results from
internal validation should be reported, including any
optimism-corrected performance measures (for exam-
ple, reporting both the apparent and corrected c-in-
dex); item 10b and Box F. If a prediction model has
been simplified (item 15b), the performance (for exam-
ple, c-index) of the original model (for example, the full
regression model), as well as any simplified model,
should be reported.

Figure 6. Example figure: a graphical scoring system to obtain a predicted probability in an individual.

Systolic blood pressure (mm Hg)
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<6% 6-20% 21-50% >50%
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29
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49
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For ease of use at the point of care, we developed a simple prognostic model. For this model, we included the strongest predictors with the same
quadratic and cubic terms as used in the full model, adjusting for tranexamic acid. We presented the prognostic model as a chart that cross
tabulates these predictors with each of them recoded in several categories. We made the categories by considering clinical and statistical criteria.
In each cell of the chart, we estimated the risk for a person with values of each predictor at the mid-point of the predictor's range for that cell. We
then coloured the cells of the chart in four groups according to ranges of the probability of death: <6%, 6-20%, 21-50%, and >50%. We decided
these cut-offs by considering feedback from the potential users of the simple prognostic model and by looking at previous publications. GCS =
Glasgow Coma Scale. Reproduced from reference 123, with permission from BMJ Publishing Group.
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In addition to reporting a single numerical quanti-
fication, graphical approaches to visualize discrimina-
tion between persons without and with the outcome
are recommended, such as a histogram, density plot,
or dot plot for each outcome group (417). For logistic
regression models, a receiver-operating characteristic
(ROC) curve may also be presented, but unless it de-
picts relevant predicted risks clearly labeled on the
curve, it is largely uninformative and offers nothing over
the c-statistic.

If more than 1 model was developed (for example,
a basic and an extended model [418]) or evaluated on
the same data set, one might compare their perfor-
mance, which necessitates use of a statistical method
that accounts for the fact that models were developed
or validated on the same data (334, 335, 419).

Where the NRI has been calculated (acknowledg-
ing the caveats described in item 10d) to evaluate the
incremental value of a specific predictor beyond a com-
bination of existing predictors, authors should report
separately both the event and nonevent components of
the NRI separately (339), along with a single summary
NRI (351, 357, 420, 421).

Decision analytic measures, such as net benefit or
relative utility, are usually presented graphically rather
than as a single numerical estimate (361–363, 422). The
x-axis for such graphs is a measure of patient or clini-

cian preference, such as the minimum probability of
cancer at which a patient would opt for biopsy (138) or
the number of patients a doctor would be willing to
treat with a drug to prevent 1 cardiovascular event
(117). The range of the x-axis should generally be cho-
sen to represent reasonable variation in practice. For
example, there is little justification for including 80% as
a threshold for prostate cancer biopsy, because it as-
sumes that some patients would not consider biopsy if
given a 75% probability of cancer.

The y-axis, the net benefit, is the difference be-
tween the number of true-positive results and the num-
ber of false-positive results, weighted by a factor that
gives the cost of a false-positive relative to a false-
negative result. For example (Figure 18), if 2 models
being compared at a particular threshold have a differ-
ence in net benefit of 0.005 (that is, model A [QRISK2-
2011] minus model B [NICE Framingham]), then this is
interpreted as the net increase in true-positive find-
ings—that is, by using model A, 5 more true-positive
outcomes are identified per 1000 individuals without
increasing the number of false-positive findings.

Graphical representations of decision analytic mea-
sures should avoid devoting large portions of the
graph to negative net benefit. Curves should be
smoothed; if sample sizes are moderate, investigators
can either apply statistical smoothing, or calculate net

Figure 7. Example figure: a nomogram, and how to use it to obtain a predicted probability in an individual.
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CRP (mg L–1)

LDH (U L–1)
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Lymph node metastasis
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Total points
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6 months survival probability

12 months survival probability

0

0.1

100

40 45 50 55 60
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65 70 75 80 85 90 95

0.1

2,3,4

>10 g dL–1

Present

Absent
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Present

0

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
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1.0 10 100 300
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Nomogram for prediction of positive lymph nodes among patients who underwent a standard pelvic lymph node dissection. Instructions: Locate the
patient's pretreatment prostate-specific antigen (PSA) on the initial PSA (IPSA) axis. Draw a line straight upward to the point's axis to determine how
many points toward the probability of positive lymph nodes the patient receives for his PSA. Repeat the process for each variable. Sum the points
achieved for each of the predictors. Locate the final sum on the Total Points axis. Draw a line straight down to find the patient's probability of having
positive lymph nodes. ECOG = Eastern Cooperative Oncology Group; CRP = C-reactive protein; Hb = hemoglobin; LDH = lactate dehydrogenase;
PS = performance status. Reprinted from reference 410, with permission from Elsevier.
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benefit at more widely spaced intervals (for example,
every 5%).

Model Updating
Item 17. If done, report the results from any

model updating (i.e., model specification, model
performance). [V]

Examples

For the recalibrated models, all regression co-
efficients were multiplied by the slope of the
calibration model (0.65 for men and 0.63 for
women). The intercept was adjusted by multi-
plying the original value by the calibration
slope and adding the accompanying intercept
of the calibration model (�0.66 for men and
�0.36 for women). To derive the revised mod-
els, regression coefficients of predictors that
had added value in the recalibrated model
were further adjusted. For men, regression co-
efficients were further adjusted for the predic-
tors deferral at the previous visit, time since the
previous visit, delta Hb, and seasonality. For
women, regression coefficients were further
adjusted for deferral at the previous visit and

delta Hb . . . available as supporting informa-
tion in the online version of this paper, for the
exact formulas of the recalibrated and revised
models to calculate the risk of Hb deferral)
(370). [Diagnostic; Model Updating; Logistic]

The mis-calibration of Approach 1 indicated
the need for re-calibration and we obtained a
uniform shrinkage factor when we fitted
logit(P(Y = 1)) = a + b*logit(p) in Approach 2.
We obtained the estimates a = �1.20 and b =
0.11, indicating heavy shrinkage (368). [Diag-
nostic; Model Updating; Logistic]

Results of the performance of the original clin-
ical prediction model compared with that of
different models extended with genetic vari-
ables selected by the lasso method are pre-
sented in Table 3. Likelihood ratio tests were
performed to test the goodness of fit between
the two models. The AUC curve of the original
clinical model was 0.856. Addition of TLR4
SNPs [single-nucleotide polymorphisms] to the
clinical model resulted in a slightly decreased
AUC. Addition of TLR9-1237 to the clinical
model slightly increased the AUC curve to 0.861,
though this was not significant (p = 0.570). NOD2
SNPs did not improve the clinical model (423).
[Prognostic; Model Updating; Logistic]

Figure 9. Example figure: a receiver-operating 
characteristic curve, with predicted risks labelled on the 
curve.
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Receiver operating characteristic curve for risk of pneumonia . . . Sen-
sitivity and specificity of several risk thresholds of the prediction model
are plotted. Reproduced from reference 416, with permission from
BMJ Publishing Group.

Figure 8. Example figure: a calibration plot with
c-statistic and distribution of the predicted probabilities 
for individuals with and without the outcome (coronary 
artery disease).
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Reproduced from reference 256, with permission from BMJ Publish-
ing Group.
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Explanation
The performance of an existing model with new

data is often poorer than in the original development
sample. The investigators may then decide to update
or recalibrate the existing model in one of several ways
(Table 3 and item 10e). If a prediction model has been
updated on the basis of the validation study results,
then authors should report all aspects of the model that
have been updated. Depending on the method of up-
dating (Table 3), this includes reporting the reesti-
mated intercept, updated regression coefficients (for
example, using the slope of the calibration plot of the
original model in the validation set), or the estimated
regression coefficients of the model, including any new
predictors. Model updating is more complex in the
context of Cox regression models (309, 373).

The updated model is in essence a new model.
Updated models should thus also be reported in suffi-
cient detail to enable readers to make predictions for
individual patients (items 15a and 15b) in subsequent

validation studies or in practice. The performance of
the updated model should also be reported (item 16).

Discussion
Limitations

Item 18. Discuss any limitations of the study
(such as nonrepresentative sample, few events per
predictor, missing data). [D;V]

Examples

The most important limitation of the model for
predicting a prolonged ICU stay is its complex-
ity. We believe this complexity reflects the
large number of factors that determine a pro-
longed ICU stay. This complexity essentially
mandates the use of automated data collection
and calculation. Currently, the infrequent avail-
ability of advanced health information technol-
ogy in most hospitals represents a major bar-
rier to the model's widespread use. As more
institutions incorporate electronic medical re-
cords into their process flow, models such as
the one described here can be of great value.

Our results have several additional limitations.
First, the model's usefulness is probably lim-
ited to the U.S. because of international differ-
ences that impact ICU stay. These differences
in ICU stay are also likely to adversely impact
the use of ICU day 5 as a threshold for concern
about a prolonged stay. Second, while captur-
ing physiologic information on day 1 is too
soon to account for the impact of complica-

Table 18. Example of a Reclassification Table (With Net
Reclassification Improvement and 95% CI) for a Basic and
Extended Diagnostic Model Using a Single Probability
Threshold*

DVT Yes (n � 416)
Model 2 With

D-Dimer

Model 1 without D-Dimer < 25 > 25 Total

≤ 25 92 123 215
>25 26 175 201
Total 118 298 416

DVT No (n � 1670)

Model 2 With
D-Dimer

Model 1 without D-Dimer < 25 > 25 Total

≤ 25 1223 116 1339
>25 227 104 331
Total 1450 220 1670

DVT = deep venous thrombosis.
From reference 367.
* The net reclassification improvement for addition of D-Dimer assay to
the combination of history and physical examination results with the
use of the numbers shown . . . was: (0.30–0.06) – (0.07–0.14) = 0.31
(95% CI, 0.24–0.36).

Figure 10. Example figure: a decision curve analysis.
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The figure displays the net benefit curves for QRISK2-2011, QRISK2-
2008, and the NICE Framingham equation for people aged between
35 and 74 years. At the traditional threshold of 20% used to designate
an individual at high risk of developing cardiovascular disease, the net
benefit of QRISK2-2011 for men is that the model identified five more
cases per 1000 without increasing the number treated unnecessarily
when compared with the NICE Framingham equation. For women the
net benefit of using QRISK2-2011 at a 20% threshold identified two
more cases per 1000 compared with not using any model (or the NICE
Framingham equation). There seems to be no net benefit in using the
20% threshold for the NICE Framingham equation for identifying
women who are at an increased risk of developing cardiovascular dis-
ease over the next 10 years. NICE = National Institute for Health and
Care Excellence. Reproduced from reference 117, with permission
from BMJ Publishing Group.
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tions and response to therapy, day 5 may still
be too early to account for their effects. Previ-
ous studies indicate that more than half of the
complications of ICU care occur after ICU day
5. Third, despite its complexity, the model fails
to account for additional factors known to influ-
ence ICU stay. These include nosocomial infec-
tion, do not resuscitate orders, ICU physician
staffing, ICU acquired paralysis, and ICU seda-
tion practices. Fourth, the model's greatest in-
accuracy is the under-prediction of remaining
ICU stays of 2 days or less. We speculate that
these findings might be explained by dis-
charge delays aimed at avoiding night or
weekend transfers or the frequency of compli-
cations on ICU days 6 to 8 (424). [Prognosis;
Development; Validation]

This paper has several limitations. First, it rep-
resents assessments of resident performance
at 1 program in a single specialty. In addition,
our program only looks at a small range of the
entire population of US medical students. The
reproducibility of our findings in other settings
and programs is unknown. Second, we used
subjective, global assessments in conjunction
with summative evaluations to assess resident
performance. Although our interrater reliability
was high, there is no gold standard for clinical
assessment, and the best method of assessing
clinical performance remains controversial.
Lastly, r2 = 0.22 for our regression analysis
shows that much of the variance in mean per-
formance ratings is unexplained. This may be
due to limited information in residency appli-
cations in such critical areas as leadership
skills, teamwork, and professionalism (425).
[Prognosis; Development]

Explanation
Even the best-conducted studies on prediction

models are likely to have many limitations to consider.
Yet, many articles published in even the most influential
journals do not report limitations (426). Moreover, it is
common in studies of molecular classifiers to witness
overinterpretation of results without proper consider-
ation of the caveats stemming from the study design
and findings (158).

When asked after its publication, many coauthors
of a paper feel that the printed discussion does not fully
express their views, and they often add that the pub-
lished discussion is short in listing limitations and cave-
ats (427). Nevertheless, it has been repeatedly argued
that the explicit acknowledgment of limitations is one
of the key aspects of a scientific work, and a most valu-
able part of the discussion of a scientific paper (428,
429). Acknowledgment of limitations strengthens,
rather than weakens, the research.

Limitations need to be placed into perspective, and
an effort should be made to characterize what might be

the impact of each separate problem on the results of
the study. In some cases, the impact may be too uncer-
tain and practically impossible to fathom, whereas in
other cases the direction of the bias introduced can be
safely predicted and the impact assessed with substan-
tial certainty.

Limitations may pertain to any aspect of the study
design and conduct or analysis of the study. This may
include (430), but is not limited to, the types of the
study populations, selection of participants (represen-
tativeness), selection of predictors, robustness of defi-
nitions and procedures used in data collection both for
predictors and for outcomes, sample size (especially in
comparison with the complexity and number of predic-
tors under study and outcome events), length of
follow-up and ascertainment methods, multiplicity of
analyses, missing data, overfitting, internal validation
processes, and differences between the development
and validation cohorts (if applicable). It should be
discussed whether limitations affected the model de-
velopment, model validation, or both, and what the
overall impact on the credibility, applicability, and gen-
eralizability of the multivariable model would be ex-
pected to be.

For example, omission of relevant well-known pre-
dictors should be explicitly acknowledged, and these
known predictors should be catalogued. It may be use-
ful to clarify, if possible, whether predictors that have
been omitted need to be considered in parallel in fu-
ture studies or practical applications, or the included
predictors already capture sufficiently the information
from the omitted predictors. In another example, if
overfitting is suspected, this should also be acknowl-
edged, and some statement should be made about
how serious the problem is expected to be; how much
the performance of the model is overestimated; and
whether this overestimation should affect the decision
to apply the model in practice versus waiting for some
further validation, model updating (including recalibra-
tion; items 10e and 17), or a continuous improvement
strategy (for example, QRISK2 [117, 431–433]) that
would alleviate these concerns.

Papers that develop a model in a single population
without any validation in a different population should
mention the lack of external validation as a major limi-
tation by default, besides any other limitations that may
exist.

Interpretation

Item 19a. For validation, discuss the results
with reference to performance in the development
data, and any other validation data. [V]

Examples

The ABCD2 score was a combined effort by
teams led by Johnston and Rothwell, who
merged two separate datasets to derive high-
risk clinical findings for subsequent stroke.
Rothwell's dataset was small, was derived from
patients who had been referred by primary
care physicians and used predictor variables
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scored by a neurologist one to three days later.
Johnston's dataset was derived from a retro-
spective study involving patients in California
who had a transient ischemic attack.

Subsequent studies evaluating the ABCD2
score have been either retrospective studies or
studies using information from databases. Ong
and colleagues found a sensitivity of 96.6% for
stroke within seven days when using a score of
more than two to determine high risk, yet
83.6% of patients were classified as high-risk.
Fothergill and coworkers retrospectively ana-
lyzed a registry of 284 patients and found that
a cutoff score of less than 4 missed 4 out of 36
strokes within 7 days. Asimos and colleagues
retrospectively calculated the ABCD2 score
from an existing database, but they were un-
able to calculate the score for 37% of patients,
including 154 of the 373 patients who had sub-
sequent strokes within 7 days. Sheehan and
colleagues found that the ABCD2 score dis-
criminated well between patients who had a
transient ischemic attack or minor stroke versus
patients with transient neurologic symptoms
resulting from other conditions, but they did
not assess the score's predictive accuracy for
subsequent stroke. Tsivgoulis and coworkers
supported using an ABCD2 score of more than
2 as the cutoff for high risk based on the results
of a small prospective study of patients who
had a transient ischemic attack and were ad-
mitted to hospital. The systematic review by
Giles and Rothwell found a pooled AUC of
0.72 (95% CI 0.63–0.82) for all studies meeting
their search criteria, and an AUC of 0.69 (95%
CI 0.64–0.74) after excluding the original deri-
vation studies. The AUC in our study is at the
low end of the confidence band of these re-
sults, approaching 0.5 (434). [Prognosis]

Explanation
When the study presents the validation of an exist-

ing model, it should be clearly discussed whether the
currently validated model is identical to the one previ-
ously developed or whether there were any differ-
ences, and if so, why (item 12). The performance of the
model in the validation study should be discussed and
placed in context to the model performance in the orig-
inal development study and with any other existing val-
idation studies of that model. One should highlight the
main results, as well as any biases that may have af-
fected the comparison.

When the validation study shows a different (usu-
ally poorer) performance, reasons should be discussed
to enhance interpretation. For example, reasons may
include differences in case mix, predictor and outcome
definition or measurement, or follow-up time (if appli-
cable). When more than 1 model is validated in a single

data set—a so-called comparative validation—the main
results should be highlighted, including any biases that
may have affected the comparison (47, 48).

Item 19b. Give an overall interpretation of the
results considering objectives, limitations, results
from similar studies, and other relevant evidence.
[D;V]

Examples
Our models rely on demographic data and lab-
oratory markers of CKD [chronic kidney dis-
ease] severity to predict the risk of future kid-
ney failure. Similar to previous investigators
from Kaiser Permanente and the RENAAL
study group, we find that a lower estimated
GFR [glomerular filtration rate], higher albu-
minuria, younger age, and male sex predict
faster progression to kidney failure. In addition,
a lower serum albumin, calcium, and bicarbon-
ate, and a higher serum phosphate also pre-
dict a higher risk of kidney failure and add to
the predictive ability of estimated GFR and al-
buminuria. These markers may enable a better
estimate of measured GFR or they may reflect
disorders of tubular function or underlying pro-
cesses of inflammation or malnutrition.

Although these laboratory markers have also
previously been associated with progression of
CKD, our work integrates them all into a single
risk equation (risk calculator and Table 5, and
smartphone app, available at www.qxmd.com
/Kidney-Failure-Risk-Equation). In addition, we
demonstrate no improvement in model perfor-
mance with the addition of variables obtained
from the history (diabetes and hypertension
status) and the physical examination (systolic
blood pressure, diastolic blood pressure, and
body weight). Although these other variables
are clearly important for diagnosis and man-
agement of CKD, the lack of improvement in
model performance may reflect the high prev-
alence of these conditions in CKD and impre-
cision with respect to disease severity after
having already accounted for estimated GFR
and albuminuria (261). [Prognosis; Develop-
ment; Validation]

Explanation
Interpretation of the study results places the find-

ings in context of other evidence. That other evidence
could include previous similar studies on the same mul-
tivariable model, previous studies on different models
with the same or similar outcome, and other types of
evidence that may be considered relevant. Often, there
are many other prediction models that aim to serve the
same or similar purposes. For example, in a single year,
data were published on 240 assessments of 118 differ-
ent predictive tools for mortality alone (65).

The TRIPOD Statement: Explanation and Elaboration RESEARCH AND REPORTING METHODS

www.annals.org Annals of Internal Medicine • Vol. 162 No. 1 • 6 January 2015 W55

Downloaded From: http://annals.org/ by a Oxford University User  on 01/06/2015

http://www.qxmd.com/Kidney-Failure-Risk-Equation
http://www.qxmd.com/Kidney-Failure-Risk-Equation


When there are many available prediction models
for the same target populations or outcomes, a system-
atic juxtaposition of the model at hand against previ-
ously developed models would be useful in identifying
the strengths and weaknesses of the new model. Such
a comparison would ideally depend on a systematic
review of previous studies, if such a review is available
(47, 48, 435). Otherwise, the authors need to consider
performing at least an informal review of the previous
evidence and discuss the main studies that may be
competing against the current study, in terms of in-
forming the evidence base and action plans for further
validation studies or adoption into practice. Differences
in model building, predictors considered, applicable
populations and settings, and performance and
strength of the validation process may be particularly
useful to comment on. Additional considerations may
also have a bearing on the interpretation of the results—
these include limitations of the study (as discussed in
item 18); whether the initial objectives of the study
were met, and if not, why; and aspects of feasibility of
using the proposed model in diverse settings and how
its introduction may be expected to fit into or alter
other medical practices.

In some cases, other relevant evidence may be in-
teresting to consider. For example, there may exist use-
ful data on the biological plausibility of predictors in-
cluded in the model, or other data that may offer
insights about why some predictors are particularly im-
portant in their model. An empirical study suggests that
authors tend to be very nonsystematic in evoking bio-
logical plausibility evidence to support the inclusion of
specific predictors in their models (436). Efforts should
be made to give balanced views and discuss both sup-
portive and contrarian evidence, whenever such exists.

Implications
Item 20. Discuss the potential clinical use of

the model and implications for future research.
[D;V]

Examples

The likelihood of influenza depends on the
baseline probability of influenza in the commu-
nity, the results of the clinical examination, and,
optionally, the results of point of care tests for
influenza. We determined the probability of in-
fluenza during each season based on data
from the Centers for Disease Control and Pre-
vention. A recent systematic review found that
point of care tests are approximately 72% sen-
sitive and 96% accurate for seasonal influenza.
Using these data for seasonal probability and
test accuracy, the likelihood ratios for flu score
1, a no-test/test threshold of 10% and test/treat
threshold of 50%, we have summarized a sug-
gested approach to the evaluation of patients
with suspected influenza in Table 5. Physicians
wishing to limit use of anti-influenza drugs
should consider rapid testing even in patients

who are at high risk during peak flu season.
Empiric therapy might be considered for pa-
tients at high risk of complications (181). [Diag-
nosis; Development; Validation; Implications
for Clinical Use]

To further appreciate these results, a few issues
need to be addressed. First, although outpa-
tients were included in the trial from which the
data originated, for these analyses we deliber-
ately restricted the study population to inpa-
tients, because the PONV [postoperative nau-
sea and vomiting] incidence in outpatients was
substantially less frequent (34%) and because
different types of surgery were performed (e.g.
no abdominal surgery). Accordingly, our re-
sults should primarily be generalized to inpa-
tients. It should be noted that, currently, no
rules are available that were derived on both
inpatients and outpatients. This is still a subject
for future research, particularly given the in-
crease of ambulatory surgery (437). [Prognosis;
Incremental Value; Implications for Clinical
Use]

Our study had several limitations that should
be acknowledged. We combined data from 2
different populations with somewhat different
inclusion criteria, although the resulting data-
set has the advantage of greater generalizabil-
ity because it includes patients from 2 coun-
tries during 2 different flu seasons and has an
overall pretest probability typical of that for in-
fluenza season. Also, data collection was lim-
ited to adults, so it is not clear whether these
findings would apply to younger patients. Al-
though simple, the point scoring may be too
complex to remember and would be aided by
programming as an application for smart
phones and/or the Internet (181). [Diagnosis;
Development; Validation; Limitations; Implica-
tions for Research]

Explanation
In the Discussion section, an author has both the

opportunity and the responsibility to discuss the impli-
cations of the work at several levels. Prediction models
can have different potential uses. In item 3a (back-
ground and rationale for the model), researchers are
encouraged to describe these for their models. The
Discussion section is then the natural place to discuss
the potential clinical application in the light of the study
findings. Clearly, for newly developed models, it may
be more difficult to formally discuss how the model
could be used in practice, because validation studies
may be the logical next step. Indeed, authors should be
discouraged from recommending application of a
model on the basis of an initial development study
only.
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Similarly, clinical guidelines should not recom-
mend the use of nonvalidated prediction models.
Rather, clinical recommendations should be based on
the availability and synthesis of the evidence on the
accuracy of a model in other participant data, and thus
of the transportability of a model.

We stress that external model-validation studies,
even prospectively designed studies, do not indicate
the extent to which the use of such models affect med-
ical decision making or improve health outcomes. The
effect on decision making, clinician behavior, and pa-
tient outcomes can only be evaluated in comparative
(preferably randomized [438–440]) studies rather than
single-cohort, model-validation studies (20, 28, 33). Un-
fortunately, external model-validation studies are rare,
let alone model-impact studies (441, 442).

Among the topics that may be discussed with re-
gard to “To whom do results apply?” include setting
(primary care, hospital), geographic location, age, sex,
and clinical features of the medical problem for which
prediction is being assessed. A second topic concerns
how the rule might actually be applied: for example,
whether the goal of a validated diagnostic model is to
confirm or to exclude disease, which cut-offs in the pre-
diction rule might be used for each goal, and what the
possible consequences are (for example, further work-
up, or false-positive or false-negative findings).

Beyond the immediate possible implications, spe-
cific suggestions for further research could be based
on the limitations of the current study, regarding such
issues as the need to validate a newly developed
model in other data sets, power of the rule to accom-
plish its goals (and potential usefulness of other predic-
tors), selection of thresholds to guide clinical manage-
ment, and problems in practical applications.

Other Information
Supplementary Information

Item 21. Provide information about the avail-
ability of supplementary resources, such as study
protocol, Web calculator, and data sets. [D;V]

Examples

The design and methods of the RISK-PCI trial
have been previously published [ref]. Briefly,
the RISK-PCI is an observational, longitudinal,
cohort, single, center trial specifically designed
to generate and validate an accurate risk
model to predict major adverse cardiac events
after contemporary pPCI [primary percutane-
ous coronary intervention] in patients pre-
treated with 600 mg clopidogrel. Patients were
recruited between February 2006 and Decem-
ber 2009. Informed consent was obtained from
each patient. The study protocol conforms to
the ethical guidelines of the Declaration of Hel-
sinki. It was approved by a local research ethics
committee and registered in the Current
Controlled Trials Register—ISRCTN83474650—
(www.controlled-trials.com/ISRCTN83474650)
(443). [Prognosis; Development]

User-friendly calculators for the Reynolds Risk
Scores for men and women can be freely ac-
cessed at www.reynoldsriskscore.org (444).
[Prognosis; Incremental Value]

Open source codes to calculate the QFracture-
Scores are available from www.qfracture.org
released under the GNU lesser general public
licence-version 3. (315). [Prognosis; Validation]

Explanation
All research on humans should be protocol-driven

(445, 446). A protocol for a prediction model study
should start with a clear research aim, followed by the
study design, description of predictors and outcome,
and a statistical analysis plan. Studies to develop or val-
idate a prediction model will benefit from careful con-
struction of a detailed protocol before analysis is con-
ducted; these protocols are occasionally published
(447–464). If published, readers can compare what was
planned with what was actually done. If not, we encour-
age authors to send their protocol with their submis-
sion to a journal and possibly include it with the pub-
lished article as an online appendix to help reviewers
evaluate the published report.

To use a prediction model, either in daily practice
or for further research, requires that the model be pub-
lished in sufficient detail (items 15a, 15b, and 16) to
allow probability predictions to be made for an individ-
ual and for researchers to validate and update the pre-
diction model. In addition, authors are encouraged to
provide details on how to access any Web calculators
and standalone applications (for example, for elec-
tronic devices, such as tablets) that have been devel-
oped (for example, www.outcomes-umassmed.org
/GRACE/). In rare instances where the full prediction is
too complex to report in sufficient detail in the pub-
lished report (or supplementary material) or if the
model is to be continually updated (for example,
QRISK2 [139]), details on where full access to the un-
derlying computer source code to calculate predictions
should be made available.

There is increasing appreciation that where possi-
ble, data sets and computer code should be made
publicly available for reproducing analyses (27, 465–
467), but also to allow individual participant data to be
combined and meta-analyzed (468–473). Guidance for
preparing and sharing raw clinical data with other sci-
entists has been developed that will assist authors
(271). The exemplar study by Marchionni and col-
leagues (474) provides a prototypic template for repro-
ducible development of a prognostic model demon-
strating that transparency of the full process can be
achieved. If possible, authors should provide details for
access to the source code used for the data analyses.

There is currently no mandatory requirement for
registration of observational studies; there has been re-
cent support for the idea (475–478), but also opposi-
tion (479–481). Many clinical trials registries, including
ClinicalTrials.gov, explicitly state that observational
studies can be registered (482). Although there are
clear difficulties associated with detailed preplanning
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of some types of observational studies, those concerns
should not apply to (prospective) prediction model
studies collecting new participant data for the purpose
of developing or validating a prediction model (476).

Funding
Item 22. Give the source of funding and the

role of the funders for the present study. [D;V]

Examples

The Reynolds Risk Score Project was supported
by investigator-initiated research grants from
the Donald W. Reynolds Foundation (Las Ve-
gas, Nev) with additional support from the Do-
ris Duke Charitable Foundation (New York,
NY), and the Leducq Foundation (Paris,
France). The Women's Health Study cohort is
supported by grants from the National Heart,
Lung, and Blood Institute and the National
Cancer Institute (Bethesda, Md) (208). [Progno-
sis; Development]

The Clinical and Translational Service Center at
Weill Cornell Medical College provided partial
support for data analyses. The funding source
had no role in the design of our analyses, its
interpretation, or the decision to submit the
manuscript for publication (380). [Diagnosis;
Development; Validation]

Explanation
Studies of prediction, even prospective studies,

tend to receive little or no funding, which has been
suggested to contribute to the large number of poor-
quality studies: many are conducted without any peer
review during the planning phase, when funding is usu-
ally sought (472).

Authors should disclose all sources of funding re-
ceived for conducting the study and state what role of
the funder had in the design, conduct, analysis, and
reporting of the study. If the funder had no involve-
ment, the authors should state so. Similarly, if the study
received no external funding, the authors should
clearly say so. For models that are incorporated in
guidelines, it is important to show the potential finan-
cial and other conflicts of interest of all guideline devel-
opment members, not just those involved in the predic-
tion model development (316, 483, 484).

CONCLUDING REMARKS
Studies addressing prediction models are abun-

dant, with the number of publications describing the
development, validation, updating, or extension of pre-
diction models showing no sign of abating. The
TRIPOD Statement aims to provide helpful guidance for
the reporting of studies developing or validating (with-
out or with updating) 1 or more prediction models, ei-
ther for diagnostic or prognostic purposes. Only with
full and transparent reporting can the strengths and

weaknesses of a study be revealed, thereby facilitating
its interpretation and making it usable (485–487). Com-
plete reporting also underpins future prediction model
studies, notably allowing researchers to validate and
compare existing prediction models. It can also con-
tribute to and enhance the uptake and implementation
of validated prediction models for use in daily practice.
The TRIPOD Statement will be useful in guiding peer
reviewers and journal editors in the evaluation of arti-
cles on prediction model studies. TRIPOD may also aid
in the design, conduct, and analysis of prediction
model studies.

TRIPOD was developed by a multidisciplinary
group of 24 experts, including several who were also
part of the CONSORT (96), STROBE (97, 99), PRISMA
(488), REMARK (98), GRIPS (101), STREGA (489),
STARD (100), ARRIVE (490), and CARE (491) reporting
guidelines. Using this collective experience of develop-
ing consensus-based guidelines with expert subject
knowledge, we adhered to published guidance on de-
veloping reporting guidelines (113). For each item in
the checklist, we have provided extensive discussion,
providing the rationale and including illustrative exam-
ples of good reporting. Where possible, we have re-
ferred to relevant empirical evidence from reviews of
publications. Furthermore, we have included several
boxes to provide additional discussion on key issues in
developing and validating prediction models.

Some may argue that TRIPOD will increase the
workload for the authors, reviewers, and journals, but
we believe following TRIPOD will probably reduce re-
view time, reduce requests for revisions, and help to
ensure a fair review process (108). The items included
in the checklist reflect numerous discussions to reach
consensus on the minimal set of information to report
to enable an informed assessment of study quality, risks
of bias and clinical relevance, and enable the results to
be used (532).

Reporting guidelines have also mistakenly been
suggested to stifle research creativity. Like other re-
porting guidelines, TRIPOD does not dictate how anal-
yses should be carried out, but rather aims to ensure
the relevant information is reported.

Finally, the TRIPOD Statement should be viewed as
an evolving document that will require continual as-
sessment, and if necessary refinement, as methodology
for prediction model studies continues to evolve. The
TRIPOD Web site (www.tripod-statement.org) will pro-
vide a forum for discussion, suggestions for improving
the checklist and this explanation and elaboration doc-
ument, and resources relevant to prediction model
studies. We also envisage encouraging translations of
the checklist and making them available on the Web
site. Announcements and information relating to
TRIPOD will be broadcast on the TRIPOD Twitter ad-
dress (@TRIPODStatement). TRIPOD will also be linked
to and promoted by the EQUATOR Network library for
health research reporting (www.equator-network.org).

From Julius Center for Health Sciences and Primary Care, Uni-
versity Medical Center Utrecht, Utrecht, the Netherlands; Cen-
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tre for Statistics in Medicine, Nuffield Department of Ortho-
paedics, Rheumatology and Musculoskeletal Sciences, Botnar
Research Centre, University of Oxford, Oxford, United King-
dom; Stanford Prevention Research Center, School of Medi-
cine, School of Humanities and Sciences, and Meta-Research
Innovation Center at Stanford (METRICS), Stanford University,
Stanford, California; Screening and Test Evaluation Program
(STEP), School of Public Health, Sydney Medical School, Uni-
versity of Sydney, Sydney, Australia; Erasmus MC–University
Medical Center Rotterdam, Rotterdam, the Netherlands; Me-
morial Sloan Kettering Cancer Center, New York, New York;
and University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina.
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368. Held U, Bové DS, Steurer J, Held L. Validating and updating a
risk model for pneumonia—a case study. BMC Med Res Methodol.
2012;12:99. [PMID: 22817850]
369. Cindolo L, Chiodini P, Gallo C, Ficarra V, Schips L, Tostain J,
et al. Validation by calibration of the UCLA integrated staging system
prognostic model for nonmetastatic renal cell carcinoma after
nephrectomy. Cancer. 2008;113:65-71. [PMID: 18473356]
370. Baart AM, Atsma F, McSweeney EN, Moons KG, Vergouwe Y,
de Kort WL. External validation and updating of a Dutch prediction
model for low hemoglobin deferral in Irish whole blood donors.
Transfusion. 2014;54(3 Pt 2):762-9. [PMID: 23607909]
371. Chalmers I, Glasziou P. Avoidable waste in the production and
reporting of research evidence. Lancet. 2009;374:86-9. [PMID:
19525005]
372. Janssen KJ, Vergouwe Y, Kalkman CJ, Grobbee DE, Moons
KG. A simple method to adjust clinical prediction models to local
circumstances. Can J Anaesth. 2009;56:194-201. [PMID: 19247740]
373. van Houwelingen HC. Validation. calibration, revision and com-
bination of prognostic survival models. Stat Med. 2000;19:3401-15.
[PMID: 11122504]
374. Manola J, Royston P, Elson P, McCormack JB, Mazumdar M,
Négrier S, et al; International Kidney Cancer Working Group. Prog-
nostic model for survival in patients with metastatic renal cell carci-
noma: results from the International Kidney Cancer Working Group.
Clin Cancer Res. 2011;17:5443-50. [PMID: 21828239]
375. Krupp NL, Weinstein G, Chalian A, Berlin JA, Wolf P, Weber RS.
Validation of a transfusion prediction model in head and neck cancer
surgery. Arch Otolaryngol Head Neck Surg. 2003;129:1297-302.
[PMID: 14676155]
376. Morra E, Cesana C, Klersy C, Barbarano L, Varettoni M,
Cavanna L, et al. Clinical characteristics and factors predicting evo-
lution of asymptomatic IgM monoclonal gammopathies and IgM-
related disorders. Leukemia. 2004;18:1512-7. [PMID: 15322559]
377. Kelder JC, Cramer MJ, van Wijngaarden J, van Tooren R,
Mosterd A, Moons KG, et al. The diagnostic value of physical exam-
ination and additional testing in primary care patients with suspected
heart failure. Circulation. 2011;124:2865-73. [PMID: 22104551]

378. Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ,
Campbell FC, et al. A prognostic index in primary breast cancer. Br J
Cancer. 1982;45:361-6. [PMID: 7073932]
379. Tang EW, Wong CK, Herbison P. Global Registry of Acute Cor-
onary Events (GRACE) hospital discharge risk score accurately pre-
dicts long-term mortality post acute coronary syndrome. Am Heart J.
2007;153:29-35. [PMID: 17174633]
380. Bang H, Edwards AM, Bomback AS, Ballantyne CM, Brillon D,
Callahan MA, et al. Development and validation of a patient self-
assessment score for diabetes risk. Ann Intern Med. 2009;151:775-
83. [PMID: 19949143]
381. Chen L, Magliano DJ, Balkau B, Colagiuri S, Zimmet PZ, Tonkin
AM, et al. AUSDRISK: an Australian Type 2 Diabetes Risk Assessment
Tool based on demographic, lifestyle and simple anthropometric
measures. Med J Aust. 2010;192:197-202. [PMID: 20170456]
382. Starmans R, Muris JW, Fijten GH, Schouten HJ, Pop P, Knottne-
rus JA. The diagnostic value of scoring models for organic and non-
organic gastrointestinal disease, including the irritable-bowel syn-
drome. Med Decis Making. 1994;14:208-16. [PMID: 7934707]
383. Tzoulaki I, Seretis A, Ntzani EE, Ioannidis JP. Mapping the ex-
panded often inappropriate use of the Framingham Risk Score in
the medical literature. J Clin Epidemiol. 2014;67:571-7. [PMID:
24513280]
384. Harrison DA, Rowan KM. Outcome prediction in critical care:
the ICNARC model. Curr Opin Crit Care. 2008;14:506-12. [PMID:
18787441]
385. Kanaya AM, Wassel Fyr CL, de Rekeneire N, Schwartz AV,
Goodpaster BH, Newman AB, et al. Predicting the development of
diabetes in older adults: the derivation and validation of a prediction
rule. Diabetes Care. 2005;28:404-8. [PMID: 15677800]
386. Stephens JW, Ambler G, Vallance P, Betterridge DJ, Humphries
SE, Hurel SJ. Cardiovascular risk and diabetes. Are the methods of
risk prediction satisfactory? Eur J Cardiovasc Prev Rehabil. 2004;11:
521-8. [PMID: 15580065]
387. Cogswell R, Kobashigawa E, McGlothlin D, Shaw R, De Marco
T. Validation of the Registry to Evaluate Early and Long-Term Pulmo-
nary Arterial Hypertension Disease Management (REVEAL) pulmo-
nary hypertension prediction model in a unique population and
utility in the prediction of long-term survival. J Heart Lung Transplant.
2012;31:1165-70. [PMID: 23062726]
388. Eagle KA, Lim MJ, Dabbous OH, Pieper KS, Goldberg RJ, Van
de Werf F, et al; GRACE Investigators. A validated prediction model
for all forms of acute coronary syndrome: estimating the risk of
6-month postdischarge death in an international registry. JAMA.
2004;291:2727-33. [PMID: 15187054]
389. Geersing GJ, Erkens PM, Lucassen WA, Büller HR, Cate HT,
Hoes AW, et al. Safe exclusion of pulmonary embolism using the
Wells rule and qualitative d-dimer testing in primary care: prospec-
tive cohort study. BMJ. 2012;345:e6564. [PMID: 23036917]
390. Collins GS, Altman DG. Identifying patients with undetected
gastro-oesophageal cancer in primary care: external validation of
QCancer® (Gastro-Oesophageal). Eur J Cancer. 2013;49:1040-8.
[PMID: 23159533]
391. de Vin T, Engels B, Gevaert T, Storme G, De Ridder M. Stereo-
tactic radiotherapy for oligometastatic cancer: a prognostic model
for survival. Ann Oncol. 2014;25:467-71. [PMID: 24355488]
392. Bernasconi P, Klersy C, Boni M, Cavigliano PM, Calatroni S,
Giardini I, et al. World Health Organization classification in combina-
tion with cytogenetic markers improves the prognostic stratification
of patients with de novo primary myelodysplastic syndromes. Br J
Haematol. 2007;137:193-205. [PMID: 17408458]
393. Schemper M, Smith TL. A note on quantifying follow-up in stud-
ies of failure time. Control Clin Trials. 1996;17:343-6. [PMID:
8889347]
394. Echouffo-Tcheugui JB, Woodward M, Kengne AP. Predicting a
post-thrombolysis intracerebral hemorrhage: a systematic review.
J Thromb Haemost. 2013;11:862-71. [PMID: 23469771]
395. Le Gal G, Righini M, Roy PM, Sanchez O, Aujesky D, Bou-
nameaux H, et al. Prediction of pulmonary embolism in the emer-

The TRIPOD Statement: Explanation and Elaboration RESEARCH AND REPORTING METHODS

www.annals.org Annals of Internal Medicine • Vol. 162 No. 1 • 6 January 2015 W69

Downloaded From: http://annals.org/ by a Oxford University User  on 01/06/2015



gency department: the revised Geneva score. Ann Intern Med. 2006;
144:165-71. [PMID: 16461960]
396. Davis JL, Worodria W, Kisembo H, Metcalfe JZ, Cattamanchi A,
Kawooya M, et al. Clinical and radiographic factors do not accurately
diagnose smear-negative tuberculosis in HIV-infected inpatients in
Uganda: a cross-sectional study. PLoS One. 2010;5:e9859. [PMID:
20361038]
397. Ji R, Shen H, Pan Y, Wang P, Liu G, Wang Y, et al; China Na-
tional Stroke Registry (CNSR) Investigators. Risk score to predict gas-
trointestinal bleeding after acute ischemic stroke. BMC Gastroen-
terol. 2014;14:130. [PMID: 25059927]
398. Marrugat J, Subirana I, Ramos R, Vila J, Marin-Ibanez A,
Guembe MJ, et al; FRESCO Investigators. Derivation and validation
of a set of 10-year cardiovascular risk predictive functions in Spain:
the FRESCO Study. Prev Med. 2014;61:66-74. [PMID: 24412897]
399. Hensgens MP, Dekkers OM, Goorhuis A, LeCessie S, Kuijper
EJ. Predicting a complicated course of Clostridium difficile infection
at the bedside. Clin Microbiol Infect. 2014;20:O301-8. [PMID:
24188103]
400. Hak E, Wei F, Nordin J, Mullooly J, Poblete S, Nichol KL. Devel-
opment and validation of a clinical prediction rule for hospitalization
due to pneumonia or influenza or death during influenza epidemics
among community-dwelling elderly persons. J Infect Dis. 2004;189:
450-8. [PMID: 14745702]
401. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mul-
row CD, Pocock SJ, et al; STROBE Initiative. Strengthening the Re-
porting of Observational Studies in Epidemiology (STROBE): expla-
nation and elaboration. Epidemiology. 2007;18:805-35. [PMID:
18049195]
402. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM,
D’Agostino RB, et al. Development of a risk score for atrial fibrillation
(Framingham Heart Study): a community-based cohort study. Lancet.
2009;373:739-45. [PMID: 19249635]
403. Lang TA, Altman DG. Basic statistical reporting for articles pub-
lished in clinical medical journals: the SAMPL guidelines. In: Smart P,
Maisonneuve H, Polderman A, eds. Science Editors' Handbook. Eu-
ropean Association of Science Editors; 2013.
404. Binder H, Sauerbrei W, Royston P. Comparison between
splines and fractional polynomials for multivariable model building
with continuous covariates: a simulation study with continuous re-
sponse. Stat Med. 2013;32:2262-77. [PMID: 23034770]
405. Harrison DA, Parry GJ, Carpenter JR, Short A, Rowan K. A new
risk prediction model for critical care: the Intensive Care National
Audit & Research Centre (ICNARC) model. Crit Care Med. 2007;35:
1091-8. [PMID: 17334248]
406. Brady AR, Harrison D, Black S, Jones S, Rowan K, Pearson G,
et al. Assessment and optimization of mortality prediction tools for
admissions to pediatric intensive care in the United Kingdom. Pedi-
atrics. 2006;117:e733-42. [PMID: 16510615]
407. Kuijpers T, van der Windt DA, van der Heijden GJ, Twisk JW,
Vergouwe Y, Bouter LM. A prediction rule for shoulder pain related
sick leave: a prospective cohort study. BMC Musculoskelet Disord.
2006;7:97. [PMID: 17150087]
408. Pocock SJ, McCormack V, Gueyffier F, Boutitie F, Fagard RH,
Boissel JP. A score for predicting risk of death from cardiovascular
disease in adults with raised blood pressure, based on individual
patient data from randomised controlled trials. BMJ. 2001;323:75-
81. [PMID: 11451781]
409. Casikar I, Lu C, Reid S, Condous G. Prediction of successful
expectant management of first trimester miscarriage: development
and validation of a new mathematical model. Aust N Z J Obstet
Gynaecol. 2013;53:58-63. [PMID: 23405997]
410. Godoy G, Chong KT, Cronin A, Vickers A, Laudone V, Touijer K,
et al. Extent of pelvic lymph node dissection and the impact of stan-
dard template dissection on nomogram prediction of lymph node
involvement. Eur Urol. 2011;60:195-201. [PMID: 21257258]
411. Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis
part II: multivariate data analysis—an introduction to concepts and
methods. Br J Cancer. 2003;89:431-6. [PMID: 12888808]

412. Wells P, Anderson D, Rodger M, Ginsberg J, Kearon C, Gent M,
et al. Derivation of a simple clinical model to categorize patients
probability of pulmonary embolism: increasing the models utility
with the SimpliRED d-dimer. Thromb Haemost. 2000;83:416-20.
[PMID: 10744147]
413. Cole TJ. Scaling and rounding regression-coefficients to inte-
gers. Appl Stat. 1993;42:261-8.
414. Sullivan LM, Massaro JM, D’Agostino RB Sr. Presentation of
multivariate data for clinical use: the Framingham study risk score
functions. Stat Med. 2004;23:1631-60. [PMID: 15122742]
415. Moons KG, Harrell FE, Steyerberg EW. Should scoring rules be
based on odds ratios or regression coefficients? J Clin Epidemiol.
2002;55:1054-5. [PMID: 12464384]
416. Nijman RG, Vergouwe Y, Thompson M, van Veen M, van Meurs
AH, van der Lei J, et al. Clinical prediction model to aid emergency
doctors managing febrile children at risk of serious bacterial infec-
tions: diagnostic study. BMJ. 2013;346:f1706. [PMID: 23550046]
417. Royston P, Altman DG. Visualizing and assessing discrimination
in the logistic regression model. Stat Med. 2010;29:2508-20. [PMID:
20641144]
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