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Diagnostic Accuracy Data

= Agreement between results of the index test
and reference standard

= Many measures of agreement
= Focus on pairs of sensitivity & specificity




Clinical Example

Tumor markers for the detection of bladder
cancer

Measurement in urine rather than invasive
cystoscopy

Several markers: focus on bladder tumor
antigen (BTA stat)

N=8 studies




Descriptive Analysis

= Forest plots
- point estimate with 95% CI
- paired: sensitivity and specificity side-by
side
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Descriptive Analysis

= Forest plots
- point estimate with 95% CI
- paired: sensitivity and specificity side-by
side

= ROC plot
- pairs of sensitivity & specificity in ROC space
- bubble plot to show differences in precision




Plot in ROC Space
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Challenge

= Understanding sources of variation, as
results often vary between studies

= Providing informative summary measures
of the data

= Drawing robust conclusions with respect to
the research question




Echocardiography in Coronary Heart Disease
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GLAL in Gram Negative Sepsis
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F/T PSA in the Detection of Prostate cancer
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Dip-stick Testing for Urinary Tract Infection
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Sources of Variation

= Why do results differ between studies?




Sources of Variation

Chance variation

Differences in threshold
. Bias

Subgroups

Unexplained variation




Sources of Variation: Chance
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Variation due to Threshold Differences

= Explicit differences

- studies have used different cut-off values
to define positive test results




Receiver characteristic operating
(ROC) curve
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Variation due to Threshold Differences

= Explicit threshold differences

- studies have used different cut-off values
to define positive test results

= Implicit threshold differences
- differences in observers
- differences in equipment

= Consequence: negative correlation arises
between sensitivity and specificity




Sources of Variation: Threshold

Threshold: Threshold:
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Sources of Variation: Bias & Subgroup

Bias & Subgroup:

= sens & spec higher
= 55=60

= no threshold
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Overview of Statistical Approaches

= Summary ROC model / Moses-Littenberg (ML)
- Traditional approach, straightforward

= More complex models
- Bivariate random approach
- Hierarchical summary ROC approach




ML approach: Finding Smooth Curve in ROC

1.0
| 6 |
0.8 - -0 e o 57
L O 0 o © |
T 1 © @ 4
O 0.6 o ]
> © i
= g (@) |
= —> ° 3
(@] 1 (@) 1
2 0.4 i oo
o ) ]
= | © .
02+ © 1 ]
| oS, 0
0.0 ]
1

R

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate



Linear Regression & Back Transformation
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Drawbacks Moses-Littenberg Approach

Validity of significance tests

- Sampling variability in individual studies not
properly taken into account

- P-values and confidence intervals erroneous

= Summary points
- Average sensitivity/specificity cannot be
obtained
- Sensitivity for a given specificity can be
estimated




Advanced Models -
HSROC and Bivariate methods

= Hierarchical / multi-level random effects
- allows for both within and between study
variability
= Binomial distribution
- correctly models sampling uncertainty in both
sensitivity and specificity
- no zero cell adjustments needed
= Regression models
- flexible in examining sources of heterogeneity




Presentation of Results
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Curves, Summary Points, Ellipses
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Bad News

Straightforward and most-frequently used
method (Moses-Littenberg model) is
statistically flawed

Advanced models needed to make inferences
(e.g. P-values) and to calculate appropriate
confidence intervals

Fitting and checking advanced models require
statistical expertise

Advanced methods not available in RevMan 5




Good News

= Syntax to run more complex models in SAS,
STATA, WINBUGS, S-PLUS, and R are
available

= Results from these packages can be entered
into RevMan 5 to make graphs




RevMan 5

= Perform descriptive analyses

= Estimates from hierarchical SROC or bivariate
model can be imported into REVMAN +to:

- plot fitted SROC curve
- display summary points
- draw confidence or prediction ellipses
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El review Manager 5
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Support

= Cochrane support:
CESU and UKSU
explanatory papers
pilot reviews

editorial process with specific attention to meta-
analysis

workshops at Cochrane Colloquia
= Courses

= QOverview on website Diagnostic Test Accuracy
Working Group (http://srdta.cochrane.org)
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COLLABORATION®|
Statistical analysis
Statistical models are used in meta-analyses of data in systematic reviews of diagnostic This website -
L — test accuracy | T |
DTA Editorial Team Models can be run in a variety of different software programmes but this facility is not | Advanced Tips| | |-
Regional Support Units available in RevMan. Specific statistical parameters from the models run can be input into '
Contact us RevMan in order to draw appropriate graphical displays of the data

Statistical analysis Researchers have prepared macros for statistical models for meta-analysis of data from

Handbook for DTA Reviews diagnostic test accuracy studies for several statistical analysis software programs. As

Workshops and events these become available we will add them to this page
Frequently Asked Questions

Macro 1

Editorial Process of Diagnostic _ _ _ _ :
Test Accuracy reviews METADAS: A SAS macro for meta-analysis of diagnostic accuracy studies. User guide

i g version 1.0 beta. December 2008. METADAS (PDF 898KE)

Presentations Macro 2

METANDI: Stata module to perform meta-analysis of diagnostic accuracy. Harbord 2008

A user-written model for Stata for metaanalysis of DTA studies without covariates with

results in both bivariate and HSROC parameterisations, and on a graph




Take Home Messages

Two potentially correlated outcome measures
require more complex statistical models

Moses-Littenberg model is not appropriate for
formal testing

Bivariate and hierarchical summary ROC model
are sound, powerful and flexible models

These models can not be fitted in RevMan, but
results can be incorporated

Statistical expertise required in review team







Meta-analysis of Accuracy Studies

= Results often highly heterogeneous
- differences in design and conduct
differences in verification
differences in spectrum
differences in technology of tests or test execution
differences in threshold
chance variation




Powerful and Flexible Models

Examples of multivariate meta-analysis:
all advantages apply

Extension with study-level covariates to explain
heterogeneity in results or differences in accuracy
between test in accuracy

Separate effects on sensitivity and specificity
Testing of joint parameters

Software: need for non-linear mixed models in SAS,
STATA,R, S, WinBugs
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