Statistical methods for reliably updating meta-analyses

Mark Simmonds

Centre for Reviews and Dissemination University of York, UK

With: Julian Elliott, Joanne McKenzie, Georgia Salanti, Adriani Nikolakopoulou, Julian Higgins

THE UNIVERSITY of York Centre for Reviews and Dissemination

Some issues

• When can we stop updating a review?

Conclusions can change over time
Risk of error if we stop too soon

 Type I error inflated by performing multiple analyses

Controlling error

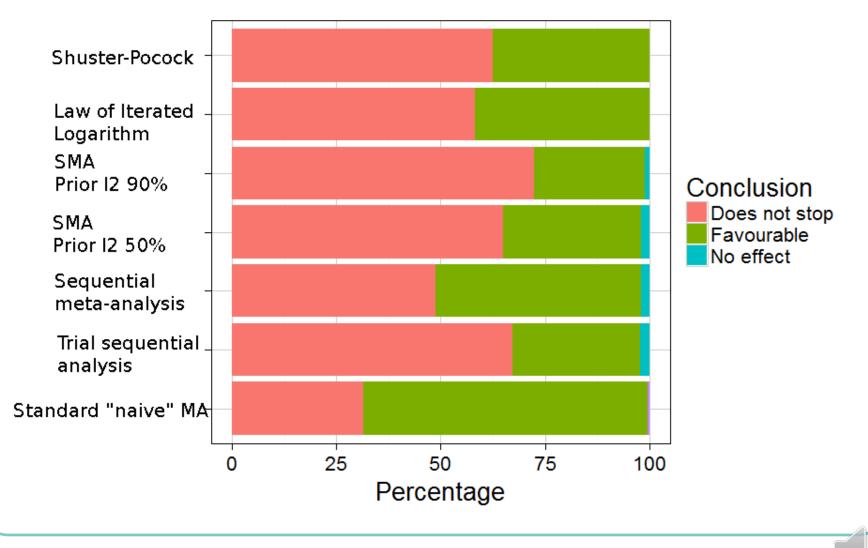
- Adapted from sequential clinical trial design
 - Sequential meta-analysis (Higgins, Simmonds, Whitehead 2010)
 - Includes Bayesian adjustment of heterogeneity
 - Trial sequential analysis (Wetterslev, Thorlund, Brok, Gluud 2008)
- Control Type I error
 - Law of Iterated Logarithm
 - "Shuster-Pocock" method
- Other methods
 - Fully Bayesian analysis
 - Robustness or stability of analysis
 - Consequences of adding new studies
 - Power gains from adding new studies

(Lan, Hu, Cappelleri 2007) (Shuster, Neu 2013)

Analyses of updated Cochrane reviews

- Searched for Cochrane reviews:
 - Updated in 2014-2015
 - At least one new trial added
 - At least one meta-analysis
 - That is statistically significant
 - At least 3 trials
- Included 76 reviews and 286 meta-analyses
 - 62% had statistically significant results
 - 44% were of sufficient size to have 80% power to detect observed effect.

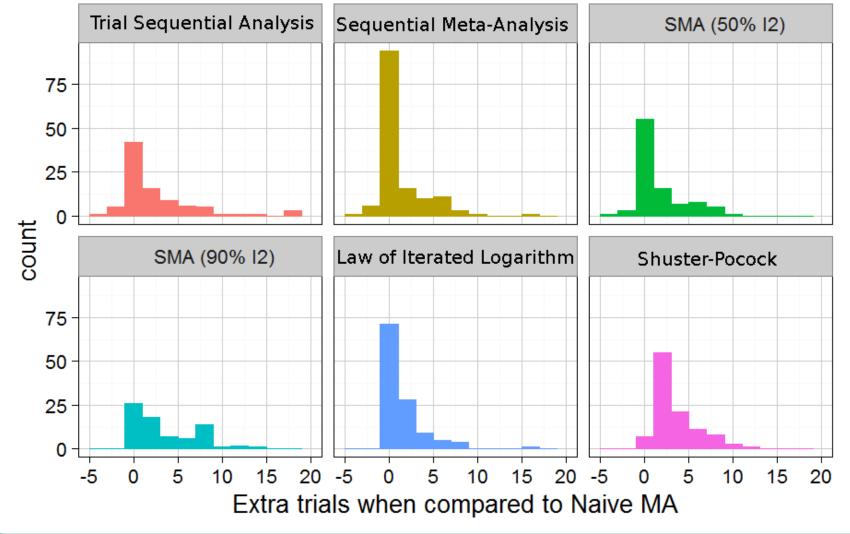
Assumptions


- Analysis using log odds ratio or SMD
- A new meta-analysis for each added trial

- 5% Type I error, 90% power
- "Desired" effect is same as observed

THE UNIVERS

Meta-analyses are uncorrelated


Conclusions of analyses

Centre for Reviews and Dissemination

THE UNIVERSITY of Ton

Additional trials to reach a conclusion

THE UNIVERSITY of Jon

"Inappropriate positives"

Conclusions of updated meta-analysis where analysis with all trials is not statistically significant

Method	Does not stop	Evidence of effect	No evidence of effect
Naïve MA	83.8	15.2	-
Trial Sequential Analysis	99.0	0	1.0
Sequential Meta- Analysis	99.0	0	1.0
SMA (50% I2)	99.0	0	1.0
SMA (90% I2)	100	0	0
Law of Iterated Logarithm	98.1	1.9	-
Shuster-Pocock	98.1	1.9	-

Conventional "Naïve" analysis

- Too many inappropriate positive conclusions
 - Elevated Type I error rate
 - But not vastly elevated for most updated reviews?
- Biased estimates of effect
- Significant results are often based on too little evidence?

Controlling for error

- All methods appear to control for Type I error
- Increased complexity
- Need to select desired effect size, adjust for heterogeneity etc.

THE UNIVERSI

May take longer before stopping

Do we need these methods?

- Is the problem with "naïve" analysis serious enough in real Living Systematic Reviews?
- Do the methods needlessly delay a statistically significant result?
- When should they be implemented?
 - As part of protocol?
 - Only with statistically significant results?

Implications for Living Systematic Reviews

- Reviews with many updates
 - Increased risk of type I error
 - Methods probably needed
- Starting with few trials
 - Need to identify required sample size
 - Methods needed as a caution if results statistically significant?
- Starting with many trials
 - Little new data expected, update for consistency

THE UNIVERS

– Methods not needed?